
Expressivity of Transformers:

Logic, Circuits, and Formal Languages

Day 1: Introduction

David Chiang (Univ. of Notre Dame, USA)

Jon Rawski (MIT/San Jose State Univ., USA)

Lena Strobl (Ume̊a University, Sweden)

Andy Yang (Univ. of Notre Dame, USA)

29 July 2024

About us

David Chiang

Lena Strobl (TA)

Jon Rawski

Andy J Yang (TA)

1

Today’s Goals

• Situate ourselves within the research field of theoretical

analysis of transformers.

• Connect transformers to formal models such as automata,

Boolean circuits, and formal logic.

• Examine results and why they may seem contradictory.

• Explore the many choices in transformer design and their

implications.

2

Expected level and prerequisites

• Neural networks. Students should be familiar with some

basic neural network architectures, including feedforward

networks.

• Mathematics. Students should be familiar with basic vector

and matrix operations, including multiplication, dot (inner)

products.

• Theory of computation. Students should be familiar with

basic formal language theory, finite automata, and Turing

machines. They should be familiar with first-order logic but

not necessarily first-order logic for defining languages. They

do not need to be familiar with circuit complexity.

3

Motivation

Motivation

Transformer

What can it do
and what can it not do?

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

4

Motivation

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

What can it do
and what can it not do?

Transformer

5

Situating ourselves

Analyzing transformers

How would you analyze what a language model can and cannot do?

6

Analyzing transformers

How to evaluate a ‘Language model’?

Empirically.

• train a model on corpus data, evaluate trained model on NLP

task benchmarks

• probe a trained model using advanced correlational techniques

Theoretically.

• ??

Analogy with Sorting: How do you evaluate a sorting algorithm?

• empirically: sort a bunch of lists of interest

• theoretically: how long and with how much compute does

sorting a list of length n take?
7

Analyzing transformers

8

Situating ourselves

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

Transformer

• Transformers [Vaswani et al., 2017]

are the neural network architecture

underlying nearly every

state-of-the-art model in natural

language processing tasks, and

have been extended to other fields

as well.

9

Situating ourselves

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

Expressivity and learnability

• Seeks boundary conditions: what

class of problems can and can’t be

solved intrinsically by a particular

class of models?

• Learnability concerns what

problems models can or can’t be

trained to solve from data

instances.

• Expressivity is a prerequisite for

learnability.

10

Situating ourselves

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

Course goal

• This course is a survey of current

knowledge about the expressivity of

transformers from the point of view

of formal languages.

11

Research Question

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

How would you go about analyzing a

transformer in terms of formal langauge

theory?

12

Research Question

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

Circuits

Automata

Logics

How would you go about analyzing a

transformer in terms of formal langauge

theory?

• We want to characterize the

expressivity of transformers in

relation to formal models, such as

automata, boolean circuits or

formal logic.

13

Importance of understanding expressivity

Why do you think results of expressivity are important?

14

Importance of understanding expressivity

• Understanding the expressivity of transformers is crucial for

both theory and practice.

• Theoretically, it helps us identify the boundaries of their

capabilities, avoiding costly and tiresome experimentation.

• Practically, it informs the design of more effective models and

algorithms, optimizing their performance for specific tasks in

natural language processing and beyond.

15

Chomsky vs Piaget (1980): expressivity & language learning

[T]hat is exactly what generative grammar has been

concerned with for twenty-five years: the whole compli-

cated array of structures beginning, let’s say, with finite-

state automata, various types of context-free or context-

sensitive grammars, and various subdivisions of these the-

ories of transformational grammars—these are all theories

of proliferating systems of structures designed for the

problem of trying to locate this particular structure,

language, within that system. So there can’t be any

controversy about the legitimacy of that attempt.

16

Expressivity and natural language [Rawski and Heinz, 2019]

17

Expressivity and natural language [Rawski and Heinz, 2019]

17

Expressivity and natural language [Rawski and Heinz, 2019]

17

Expressivity and natural language [Rawski and Heinz, 2019]

17

Formal languages and neural Nets: Old friends

McCulloch and Pitts [1943] described ‘a logical model for the

behaviour of nervous systems that turned out to be the model of a

finite-state machine’ (from Perrin 1943)

Kleene [1951] attempted to generalize and nail down the kinds of

“events” their neural nets could capture, and with which

operations.

He called them “regular” events, which would later get simplified

to regular expressions

Fun fact: Kleene called them ‘regular’ because he couldn’t think of

a better name; M&P called them ‘prehensile events’

18

Formal languages and neural Nets: Old friends

McNaughton and Papert [1971] investigated a class of

“counter-free” neural nets.

They showed these correspond to a restricted version of finite-state

machines, called “counter-free” automata

They then showed these define the same languages as first-order

logic with precedence and Linear Temporal Logic, the so-called

“star-free” languages [Schützenberger, 1965]

Sine then, many studies on types of automata and types of neural

network

19

Star-free regular language

Star-free languages over a finite alphabet Σ can be constructed

using concatenation, union and complement.

They are the languages of star-free regular expressions, defined in

BNF as:

α ::= ∅ | ϵ | σ | α1 ∪ α2 | α1α2 | αC

where σ ∈ Σ

20

Star-free regular language

Example

Let Σ = {a, b}.

• Σ∗ is star-free because Σ∗ = ∅C.
• (ab)∗ is star-free because

(ab)∗ = (bΣ∗ ∪ Σ∗a ∪ Σ∗aaΣ∗ ∪ Σ∗bbΣ∗)C.

• (aa)∗ is regular but not star-free.

21

Counter-free behavior: abstract characterization of star-free

A stringset is counter-free iff there exists some n > 0 such that for

all strings u, v ,w ∈ Σ∗, where |v | ≥ 1, and for all i ≥ 1

uvnw ∈ L ⇔ uvn+iw ∈ L.

Example (English possessor recursion)

my mother’s mother resembled my mother ∈ L

my mother’s (mother’s)︸ ︷︷ ︸
≥1

mother resembled my mother ∈ L

22

Many Ways to Get Star-Free

Theorem [Schützenberger, 1965, McNaughton and Papert, 1971]

For any regular language L, the following are equivalent:

• L is star-free.

• L is counter-free.

• Its minimal DFA is counter-free.

• it is definable in first-order logic

• it is definable in linear temporal logic

23

Star-free regular language: Counter-free automata

Intuitively, a counter-free DFA is one that can test whether

something happens, but not how many times it happens.

For every q
w−→ q, w cannot be xk where x ∈ Σ∗ and k > 1.

q1 q2

q3

a

b

b

a

a, b

This DFA recognizes (ab)∗, is counter-free.

The only cycles are on ab (from q1 to itself), a and b (from q3 to

itself), and none of these strings is of the form xk for k > 1.

24

Star-free regular language: Counter-free automata

q1 q2

q3

a

b

a

b

a, b

This DFA recognizes (aa)∗, is not counter-free.

It is not counter-free because it has a cycle on aa, which is a2.

25

Star-free regular language: First-order logic

a set of finite strings that satisfy a closed formula of a logic

First-order logic (FO)

formulas are the smallest set

containing

• Variables x , y , . . .

• Atomic formulas

Qa(x), x = y , x < y

• ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 →
ϕ2,¬ϕ1

• ∀x .ϕ,∃x .ϕ

FOM

• add MAJORITY quanifiers

Mx .ϕ

BIT(x , y)

• holds iff the y -th bit of x is 1

26

First-Order exercises

Exercise

Determine the formal languages of the following logical sentences.

1. (∀x)[Qa(x)]

2. (∃x)[Qa(x)]

3. (∃x)[(Qa(x) ∧ (∀y)[(Qa(y) → x = y)])]

4. (∃x)[(∃y)[((Qa(x) ∧ Qb(y) ∧ x < y)]]

27

First-Order exercises

Exercise

Write FO sentences for the following languages:

1. All words which begin with a (= aΣ∗)

2. All words which end with a (= Σ∗a)

28

Automata vs Logic: a∗b∗ for Σ = {a, b}

q1 q2

a

b

b

The formula

ϕ = ∀x .∀y .Qa(x) ∧ Qb(y) → x < y

defines the regular language a∗b∗. The formula says that every a

must precede every b, which is true iff the string matches a∗b∗.

29

Star-free regular language: Linear temporal logic

a b c a b b b

Qa 1 0 0 1 0 0 0

Qb 0 1 0 0 1 1 1

Qc 0 0 1 0 0 0 0

Qa ∨ ¬Qb 1 0 1 1 0 0 0

Qb since Qa 0 1 1 0 1 1 1

w, 0 ⊨ Qa

30

Star-free regular language: Linear temporal logic

a b c a b b b

Qa 1 0 0 1 0 0 0

Qb 0 1 0 0 1 1 1

Qc 0 0 1 0 0 0 0

Qa ∨ ¬Qb 1 0 1 1 0 0 0

Qb since Qa 0 1 1 0 1 1 1

w, 3 ⊨ Qa ∨ ¬Qb

30

Star-free regular language: Linear temporal logic

a b c a b b b

Qa 1 0 0 1 0 0 0

Qb 0 1 0 0 1 1 1

Qc 0 0 1 0 0 0 0

Qa ∨ ¬Qb 1 0 1 1 0 0 0

Qb since Qa 0 1 1 0 1 1 1

w, 6 ⊨ Qb since Qa

30

LTL

For input string w = w1 · · ·wn and position i ∈ [n], we define

w, i ⊨ ϕ as follows:

w, i ⊨ Qa wi = a

w, i ⊨ ϕ1 ∨ ϕ2 w, i ⊨ ϕ1 or w, i ⊨ ϕ2

w, i ⊨ ¬ϕ1 w, i ̸⊨ ϕ1

w, i ⊨ ϕ1 since ϕ2 for some j < i , we have w, j ⊨ ϕ2, and

for all k such that j < k < i , we have w, k ⊨ ϕ1

For an input string w ∈ Σ+ of length n we write w ⊨ ϕ if and only

w, n ⊨ ϕ.

31

LTL exercises

Let’s redefine these same languages as before using LTL

(a) All words which begin with a (so aΣ∗)

(b) All words which end with a (so Σ∗a)

32

Circuit complexity

Example (XOR circuit)

Here’s a circuit with input length 2. It computes the XOR function.

We draw the inputs at the bottom and the output at the top.

s1 s2

∨ ∧

¬

∧
t

33

Circuit complexity

Definition (Boolean circuits)

A (Boolean) circuit C with input length n is a directed acyclic

procedural graph with:

1. n input nodes

si

· · ·
3. Output node t

t

· · ·

2. Gate nodes

¬
· · ·

∧
· · ·

· · ·
∨
· · ·

· · ·

34

Circuit complexity

s0 s1

∨ ∧

¬

∧
t

depth(C) = 3

The depth of C , depth(C), is the

length of the longest path from

any si to t.

The longest path in C in is 3,

therefore our depth(C) = 3.

s0 s1

∨ ∧

¬

∧
t

|C | = 6

The size of C , denoted |C |, is the
number of nodes in C .

The number of nodes in C is 6,

therefore |C | = 6.
35

Circuit complexity

Computation

s10 s2 1

∨1 ∧ 0

¬ 1

∧
t

1

Given: Input string w ∈ {0, 1}n.
1. each input node si is assigned the

value wi

2. each gate node labeled f computes

its value by applying f to the

values of its in-neighbors.

We can think of the circuit as

computing a Boolean function

C : {0, 1}n → {0, 1}, mapping each

input string to the value of t.

36

Circuit complexity

Definition (Boolean circuit families)

A circuit family is a sequence C = (Cn)n∈N such that for each n,

Cn is a circuit with input length n.

s1 sn

.

.
s1 s2

.

s2
, , , ,

s1

. . .

. . .

t

. . .

t

. . .

t

. . .

t

s1 s2 s3

.

C1 C2 C3 Cn. . ., , , ,C =

We treat C as a function on {0, 1}∗ as follows. For every

w ∈ {0, 1}∗ with length n, C(w) = Cn(w). Then the language

defined by C is

L(C) = {w ∈ {0, 1}∗ | C(w) = 1}.
37

Circuit complexity

The depth and size of C are the functions n 7→ depth(Cn) and

n 7→ |Cn|.

Circuit complexity classes Since transformers have constant

depth, circuit classes with constant depth are of particular interest.

• AC0 is the class of languages that can be recognized by

families of circuits with unbounded fan-in, O(poly(n)) size,

and O(1) depth.

• TC0 is like AC0, but also allows MAJORITY gates, which

have unbounded fan-in and output 1 iff at least half of their

inputs are 1.

• NC1 is the class of languages that can be recognized by

families of circuits with fan-in at most 2, O(poly(n)) size, and

O((log n)) depth.

38

Let’s take a 10 minute break!

39

Seemingly contradictory results

Recap

Trainability

Transformer

Expressivity

Formal Language
Theory

Approximation
Theory

Circuits

Automata

Logics

40

The Chomsky hierarchy, language, and language classes

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

What can transformers do? What can they not do?

41

The Chomsky hierarchy, language, and language classes

regular

DYCK-(k,D)

wwR

NC1

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

PARITY

PARITY = {x ∈ {0, 1}∗ | x has odd number of 1s}

00110 ̸∈ PARITY

10 ∈ PARITY

0101111 ∈ PARITY
42

Current Results

What has been shown so far

43

Current Results

Seemingly contradictory

How did this happen? Let’s investigate.
44

Current Results

The big picture

45

Transformer

Transformer

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

Encoder Decoder

46

Decisions to make: Input layer

Strings are mapped to sequences

of vectors by emb : Σ∗ lp→ (Rd)∗

WE: Σ → Rd

and a position(al) embedding

PEn : [n] → Rd

for n ∈ N>0:

emb(w0 · · ·wn−1)[i] = WE(wi)+PEn(i).
Input

Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

47

Decisions to make: Input layer

[Vaswani et al., 2017] introduced

the following PE:

PEn(i)[j] =

sin(10000−j/d · i) if j even

cos(10000−(j−1)/d · i) if j odd.

Theoretical papers have explored

other position embeddings:

• i itself [Pérez et al., 2021]

• i/n [Yao et al., 2021,

Chiang and Cholak, 2022]

• 1/i or 1/i2 [Pérez et al.,

2021]

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

48

Decisions to make: Attention mechanism

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

49

Decisions to make: Attention mechanism

Softmax attention

. . .

. . .

0.3 0.1 0.2 0.4

x0 x1 x2 xn−1

y0 y1 y2 yn−1

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

50

Decisions to make: Attention mechanism

Simplified attention

Some theoretical analyses

simplify attention by replacing

the softmax with variants that

focus attention only on the

position(s) with the maximum

value.
Input

Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

51

Decisions to make: Attention mechanism

Unique-hard attention

. . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

Leftmost maximal element is

used.

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

52

Decisions to make: Attention mechanism

Average-hard attention

. . .

. . .

1
3 0 1

3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

Maximal elements share weight

equally.

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

53

Decisions to make: Attention mechanism

Masked attention

. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

54

Decisions to make: Attention patterns

Unique-hard
. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1 . . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

Softmax Average-hard
. . .

. . .

1
3 0 1

3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

55

Decisions to make: Precision

. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1 . . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

R Q Q

• infinite

• O(log n)

• O(1)

P
ro
d
u
ce
s

P
re
ci
si
on

Unique-hardSoftmax Average-hard
. . .

. . .

1
3 0 1

3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

56

Decisions to make: Feed-forward networks

XOR(x1, x2)

x1 x2

−1 1 −11

1 1

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

57

Layer normalization and hidden layers

Layer normalization

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

include or omit

Hidden layers

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

pre-norm or post-norm

58

Decisions to make: Architecture

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

×N

Positional
Encoding

+

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Inputs

N×

Positional
Encoding

+

Encoder Decoder

Encoder-only

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

Encoder Decoder

Decoder-only

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm
Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

N×

×N

Positional
Encoding

Positional
Encoding

+ +

Encoder Decoder

Encoder-Decoder

59

Decisions to make: Encoder-only

Definition of recognition

To use it as a language

recognizer, we add an output

layer that converts it to a

probability.

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

×N

Positional
Encoding

+

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Inputs

N×

Positional
Encoding

+

Encoder Decoder

Linear

Output

60

Decisions to make: Summary

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

×N

Positional
Encoding

+

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Inputs

N×

Positional
Encoding

+

Decoder

Linear

Output

Encoder

R
es
id
u
al
s • pre-norm

• post-
norm

• include

• omit

L
ay
er

n
or
m

P
re
ci
si
on

• infinite

• O(log n)

• O(1)

i, i
n,

1
i ,

1
2i

Softmax Unique-hard Average-hard
. . .

. . .

1
3

0 1
3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

. . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

61

Summary and course overview

Summary and Course Overview

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

Outputs
(shifted right)

Output
Embedding

Output
Probabilities

Feed
Forward

×N

Positional
Encoding

+

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Inputs

N×

Positional
Encoding

+

Decoder

Linear

Output

Encoder

R
es
id
u
al
s • pre-norm

• post-
norm

• include

• omit

L
ay
er

n
or
m

P
re
ci
si
on

• infinite

• O(log n)

• O(1)

i, i
n,

1
i ,

1
2i

Softmax Unique-hard Average-hard
. . .

. . .

1
3

0 1
3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

. . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

Circuits

Automata

Logics

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

We will in depth current results about the expressivity of

transformers from the point of view of formal languages. 62

Course overview

Day 1

Day 2-4

Day 5

. . . things that were. . .

. . . things that are. . .

. . . and some things...
that have not yet come to pass.

63

References i

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (ACL), pages 7654–7664, May 2022.

doi:10.18653/v1/2022.acl-long.527. URL https://aclanthology.org/2022.acl-long.527.

S. C. Kleene. Representation of events in nerve nets and finite automata. Technical Report RM-704, RAND, 1951.

URL https://www.rand.org/content/dam/rand/pubs/research memoranda/2008/RM704.pdf.

Warren McCulloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of

Mathematical Biophysics, 5:127–147, 1943. doi:10.1007/BF02478259.

Robert McNaughton and Seymour A. Papert. Counter-Free Automata. MIT Press, 1971. URL

https://archive.org/details/CounterFre 00 McNa.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of Machine Learning

Research, 22:75:1–75:35, 2021. URL http://jmlr.org/papers/v22/20-302.html.

Jonathan Rawski and Jeffrey Heinz. No free lunch in linguistics or machine learning: Response to pater. Language,

95(1):e125–e135, 2019.

M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8(2):190–194,

1965. doi:10.1016/S0019-9958(65)90108-7.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30

(NeurIPS), 2017. URL

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks can process

bounded hierarchical languages. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural Language Processing

(ACL-IJCNLP), pages 3770–3785, August 2021. doi:10.18653/v1/2021.acl-long.292. URL

https://aclanthology.org/2021.acl-long.292.

64

https://doi.org/10.18653/v1/2022.acl-long.527
https://aclanthology.org/2022.acl-long.527
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://doi.org/10.1007/BF02478259
https://archive.org/details/CounterFre_00_McNa
http://jmlr.org/papers/v22/20-302.html
https://doi.org/10.1016/S0019-9958(65)90108-7
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.292
https://aclanthology.org/2021.acl-long.292

	Motivation
	Situating ourselves
	Seemingly contradictory results
	Transformer
	Summary and course overview

