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Today’s Goals

• Describe the concept of soft attention and its role in

transformer encoders.

• Explain the upper and lower bounds of computational

expressivity in soft attention models.

• Identify key arithmetic predicates, counting quantifiers, and

their relevance in soft attention encoders.
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Soft attention is hard

In the previous two days, we gave exact equivalences:

masked UHATs = star-free

AHAT decoders with intermediate steps = Turing-complete

Today, we turn to softmax-attention transformers (SMATs), which

we don’t have an exact characterization of.

Instead, we have upper bounds and lower bounds.
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Upper bound



Extending FO

We saw already that FO is equivalent to UHATs, but FO is not

powerful enough for SMATs. It’s not hard to write a SMAT for:

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}.

We need to extend FO with:

• Arithmetic predicates

• Majority or counting quantifiers
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Arithmetic predicates

• We can increase the expressivity of FO by adding more

predicates besides <. The logic FO[+,×] extends FO with

predicates:

w , I |= x + y = z if I (x) + I (y) = I (z)

w , I |= x × y = z if I (x)I (y) = I (z)

• FO[+,×] is also called FO[BIT]

Exercise

Write a formula ODD(x) that tests whether x is odd.
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Arithmetic predicates

Things that can be defined in FO[+,×]:

• The sum of O(log n) numbers with O(log n) bits each

[Immerman, 1999]

• The product of O(log n) numbers with O(log n) bits each

[Hesse et al., 2002]

• xy (special case of above)

Theorem (Barrington et al., 1990)

FO[+,×] defines exactly the languages in DLOGTIME-uniform

AC0.
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Circuit Complexity Classes

Definition (TCk)

TCk is the class of languages that can be recognized by families of

circuits with

1. unbounded fan-in,

2. O(poly(n)) size,

3. O((log n)k) depth, and

4. MAJORITY gates, which output 1 iff at least half of their

inputs are 1.
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Circuit Complexity Classes

Definition (TC0)

TC0 is the class of languages that can be recognized by families of

circuits with unbounded fan-in, O(poly(n)) size, O(1) depth, and

MAJORITY gates.
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Circuit Complexity Classes

Definition (NC1)

NC1 is the class of languages that can be recognized by families of

circuits with fan-in at most 2, O(poly(n)) size, and O((log n))

depth.
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Circuit Complexity Classes

We will show that transformers (with O(log n) precision) are in

TC0. It’s widely believed that TC0 ̸= NC1 (as in the figure). If so,

then NC1-complete languages do not belong to TC0. Consequently,

we don’t think that transformers can recognize them either.
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Circuit Complexity Classes

Example (Boolean Formula Value Problem (BFVP))

The BFVP is to decide whether a Boolean formula (with constants

0 and 1, no variables) is true or not. This problem is context-free

and NC1-complete.
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Circuit Complexity Classes

Uniform TC0 and NC1 Languages

Example (Boolean Formula Value Problem (BFVP))

The BFVP is to decide whether a Boolean formula (with

constants 0 and 1, no variables) is true or not.

Examples:

1 ∈ BFVP 0 ̸∈ BFVP

1 ∧ 1 ∈ BFVP 1 ∧ 0 ̸∈ BFVP

0 ∨ (1 ∧ 1) ∈ BFVP 1 ∧ (1 ∧ 0) ̸∈ BFVP

This problem is context-free and NC1-complete.
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Boolean Formulas and Compositional Semantics

• Evaluating Boolean formulas is crucial for computations in

compositional semantics.

• Boole’s work on logical descriptions aimed to codify a

“language of thought.”

• Modern semantic theory, influenced by lambda calculus

(Montague, Partee), builds on this foundation.

• The relationship between neural networks and compositional

behavior has been debated for decades (Fodor, Pylyshyn,

Smolensky).
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Uniform TC0 and NC1 Languages

Example (Word Problem for S5)

S5 is the set of all permutations of {1, 2, 3, 4, 5}. The word

problem for S5 is regular and NC1-complete.
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Uniform TC0 and NC1 Languages

Example (Word Problem for S5)

S5 is the set of all permutations of {1, 2, 3, 4, 5}. For simplicity,

let’s just consider

s = (12) swap 1 and 2

c = (12345) cycle 1 7→ 2, 2 7→ 3, . . . , 5 7→ 1

Does a sequence of permutations equal the identity permutation?

ε ∈ W(S5)

ss ∈ W(S5) s ̸∈ W(S5)

ccccc ∈ W(S5) cccc ̸∈ W(S5)

scccccs ∈ W(S5)

This problem is regular and NC1-complete. 14



GPT 3.5 and W(S5)
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GPT 3.5 and W(S5)
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GPT 3.5 and W(S5)

17



Natural Language Relevance of W(Sk)

The languages W(Sk) have some relevance to natural language:

• They resemble expressions like the child of the enemy of Ann

where the interpretation of the child of is (roughly) a

permutation of possible referents [Paperno, 2022].

• They have been used to benchmark transformers’

state-tracking abilities [Kim and Schuster, 2023].
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Counting Quantifiers

FOC is first order logic with counting terms [van Benthem and

Icard, 2023].

Example (Majority Language)

The majority language,

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}

can be defined by the FOC formula

(#z .Q0(z))︸ ︷︷ ︸
number of 0’s

< (#z .Q1(z))︸ ︷︷ ︸
number of 1’s

.

19



Counting Quantifiers

Exercise (Parity)

Write a FOC[+] formula for the language

PARITY = {w ∈ {0, 1}∗ | w has an odd number of 1’s}.
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FOC and TC0

Equivalences:

• FOC[+,×] = FOC[×] [Lange, 2004]

• FOC = FOM (FO with majority quantifiers) and is more

commonly called that

• FOC[+,×] = DLOGTIME-uniform TC0

Things they can do:

• The sum of O(poly(n)) numbers with O(poly(n)) bits each

• The product of O(poly(n)) numbers with O(poly(n)) bits

each [Hesse et al., 2002]

• Division and remainder of two O(poly(n))-bit numbers [Hesse

et al., 2002]
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Precision in transformers

• UHATs and AHATs only produce rational numbers, while soft

attention produces real numbers.

• Upper bounds on the expressivity of SMATs involve limiting

the precision of the numbers involved.
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Precision in transformers

• UHATs and AHATs only produce rational numbers, while soft

attention produces real numbers.

• Upper bounds on the expressivity of SMATs involve limiting

the precision of the numbers involved.

• Merrill and Sabharwal [2023] argue that O(1) precision is too

small. You need log n bits just to store the number n or 1/n!

• Instead, they use O(log n) bits of precision.
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Floating-point numbers

mantissa/significand︷ ︸︸ ︷
±1.bbb · · · bbb×2

exponent︷ ︸︸ ︷
±bbb · · · bbb

The significand and exponent combined have p ∈ O(log n) bits

Details aren’t very important:

• How to apportion bits between the significand and exponent

• Does the sign bit count as a bit

• And so on.
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Main result

Theorem (Merrill and Sabharwal, 2023)

For any O(log n)-bit floating-point transformer encoder T that

recognizes a language L, there is a formula of FOC[+,×] that

defines L.

Merrill and Sabharwal [2023]’s proof converted T to a family of

threshold circuits, but we show how to go straight to FOC[+,×].
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What’s in a Transformer?

• Addition (+), multiplication, comparison (<) of two numbers

• Exponential function (exp)

• Addition of n numbers (
∑

)

• If layer normalization: division (÷), square root (
√
)

We just need to show that these can be done on O(log n)-bit

floating point numbers. Most of these operations can be reduced

to operations on O(log n)-bit integers.

Exercise

Explain why multiplication of two O(log n)-bit floating point

numbers is definable in FOC[+,×]. How about addition?
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Summation (iterated addition)

Summation of n O(log n)-bit floating point numbers: just convert

every summand into a fixed-point number

1.011 · 20

1.100 · 2−5

1.111 · 2−10

+ 1.101 · 2−15

?.??? · 2?

⇝

1.011

0.00001100

0.0000000001111

+ 0.000000000000001101

1.011011000111101101

Each number has 2O(log n) = O(poly(n)) bits, and the sum of n

numbers with O(poly(n)) bits is still in FOC[+,×].
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Exponential function

Compute first p terms of Taylor series:

exp x =

p−1∑
i=0

x i

i !

= 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xp−1

(p − 1)!

If p ∈ O(log n):

• The error will be less than 2−p+1.

• Each term in the series is an iterated product of O(log n)

numbers, expressible in FO[+,×].

• Summation of the terms can also be expressed in FO[+,×].
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Recap

• O(log n)-precision transformer encoders only recognize

languages in FOC[+,×] = DLOGTIME-uniform TC0.

• Assuming that TC0 ̸= NC1, this implies that
O(log n)-precision transformer encoders cannot solve many
interesting problems:

• deciding whether a Boolean formula is true

• deciding whether a sequence of permutations is the identity

• reconstructing a chess board from chess moves [Merrill et al.,

2024]
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Open Questions

• Are O(1)-precision transformers equivalent to FO = LTL?

• At O(log n) precision, every operation except summation is in

FO[+,×]. Is there a tighter bound than FOC[+,×]?

• At infinite precision, is it possible to find an upper bound?
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Lower Bound



Softmax Attention and Related Work

• Bhattamishra et al. [2020] showed that one-state Parikh

automata can be simulated by SMATs.

• Chiang et al. [2023] defined a logic called FOC[+;MOD] and

showed that it can be simulated by SMATs.

• Barceló et al. [2024] defined an extension of LTL with

counting, called LTL[#,+], and showed that it can be

simulated by AHATs.

• Perhaps surprisingly, there isn’t a published proof that

softmax-attention transformers can simulate LTL.
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Simulating Temporal Logic with Softmax Attention

Now, we show that softmax-attention transformers can simulate a

temporal logic without since but with a counting operator [Yang

and Chiang, 2024]. We call this logic Kt [#,+].
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Layer Normalization

Our proof relies crucially on layer normalization

• Position-wise function Rd → Rd

• Scales and shifts the components of a vector to have mean β

and standard deviation γ

0 1 2
0
1
2
3

norm−−−→

0 1 2

β − γ

β

β + γ

• In practice β and γ are learned; here, we choose them
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Dyck-1

Set of all strings over {(, )} that are balanced and nested. That is

• Total number of ( equals total number of )

• At no point in the string is the number of ) greater than the

number of (

We can test for these constraints using Kt [#,+].
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

35



Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

#[#[Q)] > #[Q(]] = 0 T T T T T T T T
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Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

( ( ( ) ) ( ) )

Q( T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

#[#[Q)] > #[Q(]] = 0 T T T T T T T T

ϕ F F F F F F F T
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Kt [#,+]

The syntax of Kt [#,+] is defined as follows:

t ::= #[ϕ1]

| t1 + t2

ϕ ::= Qσ σ ∈ Σ

| ϕ1 ∧ ϕ2 | ¬ϕ1

| t1 = t2 | t1 < t2

Other operators (∨, →, >, ≤, ≥) can be defined in terms of the

ones above.

36



More Examples

Language Formula

a∗b∗ #[Qa ∧ (#[Qb] ≥ 1)] = 0

a∗b∗a∗ #[Qb ∧#[Qa ∧ (#[Qb] ≥ 1)] ≥ 1] = 0

Dyck-1 (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

anbncn #[Qb ∧ (#[Qc] = 0)] = #[Qb]

∧#[Qa ∧ (#[Qb ∨ Qc] = 0)] = #[Qa]

∧#[Qa] = #[Qb] ∧#[Qb] = #[Qc] ∧#[Qc] = #[Qa]

hello #[⊤] = 5 ∧ Qo ∧#[Ql ∧#[Qe ∧#[Qh] = 1] = 1] = 2

37



Main Result

Theorem (Yang and Chiang, 2024)

For any formula ϕ of Kt [#,+] that defines a language L, there is a

transformer encoder that recognizes L.
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Key Idea 1

Use uniform attention to count.

Problem:

• Uniform attention doesn’t count; it averages

|counti |
i + 1

how to get rid of this?

• Position embedding tricks (Day 3) require average-hard

attention

• Instead: Just keep the 1
i+1 for now
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Key Idea 2

Implement count2,i > count1,i as
1

i+1(count2,i − count1,i ) > 0.

Problem: We need a function like

0 1
i+1

−1

1

slope

2(i + 1)

1
i+1(count1,i − count2,i )

co
u
n
t 2

,i
>

co
u
n
t 1

,i

Slope not bounded (i.e.,

not Lipschitz

continuous) ⇒ can’t be

computed by FFNN
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Key Idea 3

Use layer normalization to make everything ±1.

0 1 2 3
0

1
i+1

2
i+1

1

clip−−→

0 1 2 3

norm−−−→

0 1 2 3
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Boolean and Count Representations

• To represent Boolean values, we use the following

representations:

true :

[
−1

1

]

false :

[
1

−1

]
• To represent the integer counti in position i , we use:[

counti
i+1

− counti
i+1

]
• These representations have zero mean so that layer

normalization does not shift them up or down
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Counting

In the following, we show how to simulate a # term in Kt [#,+]

using a uniform attention layer.

Lemma

Let A[∗, 2k : 2k + 1] store a sequence of Boolean values ϕ(i) as

defined above. For any i , let C (i) be the number of positions j ≤ i

such that A[j , 2k : 2k + 1] is true. Then there is a transformer

block that computes, at each position i , and in two other

dimensions 2k ′, 2k ′ + 1, the values −C(i)
i+1 and C(i)

i+1 .
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Uniform Attention for Averaging

We compute in position i of dimension k , the value C (i)k , which is

the average of all values up to position i in dimension k , The

expression reduces to:

ci ,k =

∑i
j=0 exp(sij)[W

(V )A∗,j ]k∑i
j=0 exp(sij)

=

∑i
j=0[W

(V )A∗,j ]k∑i
j=0 1

=

∑i
j=0 Ak,j

i + 1
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Counting Vector

Since Booleans are stored as ±1, the count we compute actually

ends up being 2C (i)+1, which we can easiliy correct with a FFNN.



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 2
i+1

∑
i ϕ(i)− 1

2
i+1

∑
i ϕ(i) + 1
...



FFNN−−−→



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 1
i+1

∑
i ϕ(i)

1
i+1

∑
i ϕ(i)

...


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Counting Vector

Since Booleans are stored as ±1, the count we compute actually

ends up being 2C (i)+1, which we can easiliy correct with a FFNN.



...

−2ϕ(i)− 1
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...

− 2
i+1

∑
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2
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∑
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...


FFNN−−−→



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 1
i+1

∑
i ϕ(i)

1
i+1

∑
i ϕ(i)

...


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Linear Constraints

Kt [#,+] can express any linear constraint on counts, that is,

constraints of the form ∑
k∈K

akCk(i) ≥ 0

where the Ck are count terms, the ak are integer coefficients, and

K is a finite set of indices.
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Testing Linear Constraints

Recall that a count Ck is stored as a pair of numbers Ck
i+1 . Thus we

need to test if∑
k∈K

ak
Ck(i)

i + 1
≥ 0 ⇐⇒ 1

i + 1
+

∑
k∈K

ak
Ck(i)

i + 1
≥ 1

i + 1

Which boils down to testing if a value is ≥ 1
i+1 .
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Clipping

To test whether this is nonnegative, we construct a feed-forward

layer that computes the function, given any input S(i):

gtz

(
S(i),

1

i + 1

)
= min

(
0.5

i + 1
,
S(i)

i + 1
− 0.5

i + 1

)
−min

(
0,

S(i)

i + 1

)

−1 0 1 2

− 0.5
i+1

0

0.5
i+1

S(i)

gt
z
(S

(i
))
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Returning to Boolean Values

Use layer normalization to make everything ±1.

0 1 2 3
0

1
i+1

2
i+1

1

clip−−→

0 1 2 3

norm−−−→

0 1 2 3
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Modal Depth

Observe that all count values become ± 1
i+1 after clipping and layer

normalization. Thus we need to make sure that count values are

never needed after a comparison.

It helps to organize the construction by modal depth The modal

depth of a formula ϕ or term C , which we notate as md(ϕ), is the

maximum level of nesting of # terms. That is,

md(Qσ) = 0 md(C1 + C2) = max(md(C1),md(C2))

md(1) = 0 md(C1 ≤ C2) = max(md(C1),md(C2))

md(¬ϕ) = md(ϕ) md(ϕ1 ∧ ϕ2) = max(md(ϕ1),md(ϕ2))

md(#[ϕ]) = 1 + md(ϕ)
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Modal Depth Example

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

∧
= =

# #

Q( Q)

# 0

>

# #

Q) Q(

Observe that the bottommost counts #[Q(] and #[Q)] are never

needed after the comparison <
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Main Result

Theorem

For every Kt [#,+] formula ϕ, there exists a masked transformer

encoder which simulates ϕ.

Proof.

Induct on modal depth of ϕ and apply the constructions described

in previous slides!
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Recap: Lower Bound of Soft Attention

• While AHATs can simulate LTL[#,+], there is currently no

published proof that SMATs can simulate the full LTL logic.

• Uniform attention is used in SMATs to simulate counting

operations.

• Layernorm is used to rescale very small values back to

Booleans.
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