
Expressivity of Transformers:

Logic, Circuits, and Formal Languages

Day 4: Encoders with Soft Attention

David Chiang (Univ. of Notre Dame, USA)

Jon Rawski (MIT/San Jose State Univ., USA)

Lena Strobl (Ume̊a University, Sweden)

Andy Yang (Univ. of Notre Dame, USA)

1 August 2024

Today’s Goals

• Describe the concept of soft attention and its role in

transformer encoders.

• Explain the upper and lower bounds of computational

expressivity in soft attention models.

• Identify key arithmetic predicates, counting quantifiers, and

their relevance in soft attention encoders.

1

Soft attention is hard

In the previous two days, we gave exact equivalences:

masked UHATs = star-free

AHAT decoders with intermediate steps = Turing-complete

Today, we turn to softmax-attention transformers (SMATs), which

we don’t have an exact characterization of.

Instead, we have upper bounds and lower bounds.

2

Upper bound

Extending FO

We saw already that FO is equivalent to UHATs, but FO is not

powerful enough for SMATs. It’s not hard to write a SMAT for:

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}.

We need to extend FO with:

• Arithmetic predicates

• Majority or counting quantifiers

3

Arithmetic predicates

• We can increase the expressivity of FO by adding more

predicates besides <. The logic FO[+,×] extends FO with

predicates:

w , I |= x + y = z if I (x) + I (y) = I (z)

w , I |= x × y = z if I (x)I (y) = I (z)

• FO[+,×] is also called FO[BIT]

Exercise

Write a formula ODD(x) that tests whether x is odd.

4

Arithmetic predicates

Things that can be defined in FO[+,×]:

• The sum of O(log n) numbers with O(log n) bits each

[Immerman, 1999]

• The product of O(log n) numbers with O(log n) bits each

[Hesse et al., 2002]

• xy (special case of above)

Theorem (Barrington et al., 1990)

FO[+,×] defines exactly the languages in DLOGTIME-uniform

AC0.

5

Circuit Complexity Classes

Definition (TCk)

TCk is the class of languages that can be recognized by families of

circuits with

1. unbounded fan-in,

2. O(poly(n)) size,

3. O((log n)k) depth, and

4. MAJORITY gates, which output 1 iff at least half of their

inputs are 1.

6

Circuit Complexity Classes

Definition (TC0)

TC0 is the class of languages that can be recognized by families of

circuits with unbounded fan-in, O(poly(n)) size, O(1) depth, and

MAJORITY gates.

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

7

Circuit Complexity Classes

Definition (NC1)

NC1 is the class of languages that can be recognized by families of

circuits with fan-in at most 2, O(poly(n)) size, and O((log n))

depth.

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

8

Circuit Complexity Classes

We will show that transformers (with O(log n) precision) are in

TC0. It’s widely believed that TC0 ̸= NC1 (as in the figure). If so,

then NC1-complete languages do not belong to TC0. Consequently,

we don’t think that transformers can recognize them either.

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

Let’s look at two examples. 9

Circuit Complexity Classes

Example (Boolean Formula Value Problem (BFVP))

The BFVP is to decide whether a Boolean formula (with constants

0 and 1, no variables) is true or not. This problem is context-free

and NC1-complete.

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

10

Circuit Complexity Classes

Uniform TC0 and NC1 Languages

Example (Boolean Formula Value Problem (BFVP))

The BFVP is to decide whether a Boolean formula (with

constants 0 and 1, no variables) is true or not.

Examples:

1 ∈ BFVP 0 ̸∈ BFVP

1 ∧ 1 ∈ BFVP 1 ∧ 0 ̸∈ BFVP

0 ∨ (1 ∧ 1) ∈ BFVP 1 ∧ (1 ∧ 0) ̸∈ BFVP

This problem is context-free and NC1-complete.
11

Boolean Formulas and Compositional Semantics

• Evaluating Boolean formulas is crucial for computations in

compositional semantics.

• Boole’s work on logical descriptions aimed to codify a

“language of thought.”

• Modern semantic theory, influenced by lambda calculus

(Montague, Partee), builds on this foundation.

• The relationship between neural networks and compositional

behavior has been debated for decades (Fodor, Pylyshyn,

Smolensky).

12

Uniform TC0 and NC1 Languages

Example (Word Problem for S5)

S5 is the set of all permutations of {1, 2, 3, 4, 5}. The word

problem for S5 is regular and NC1-complete.

regular

DYCK-(k,D)

wwR

NC1

PARITY

W(S5)

recursively
enumerable

context
sensitive

context
free

AC0

FO[BIT]

TC0

FOM[BIT]

MAJORITY
DYCK-k

ww a2
n

SHUFFLE-DYCK-2
BFVP

LP

13

Uniform TC0 and NC1 Languages

Example (Word Problem for S5)

S5 is the set of all permutations of {1, 2, 3, 4, 5}. For simplicity,

let’s just consider

s = (12) swap 1 and 2

c = (12345) cycle 1 7→ 2, 2 7→ 3, . . . , 5 7→ 1

Does a sequence of permutations equal the identity permutation?

ε ∈ W(S5)

ss ∈ W(S5) s ̸∈ W(S5)

ccccc ∈ W(S5) cccc ̸∈ W(S5)

scccccs ∈ W(S5)

This problem is regular and NC1-complete. 14

GPT 3.5 and W(S5)

15

GPT 3.5 and W(S5)

16

GPT 3.5 and W(S5)

17

Natural Language Relevance of W(Sk)

The languages W(Sk) have some relevance to natural language:

• They resemble expressions like the child of the enemy of Ann

where the interpretation of the child of is (roughly) a

permutation of possible referents [Paperno, 2022].

• They have been used to benchmark transformers’

state-tracking abilities [Kim and Schuster, 2023].

18

Counting Quantifiers

FOC is first order logic with counting terms [van Benthem and

Icard, 2023].

Example (Majority Language)

The majority language,

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}

can be defined by the FOC formula

(#z .Q0(z))︸ ︷︷ ︸
number of 0’s

< (#z .Q1(z))︸ ︷︷ ︸
number of 1’s

.

19

Counting Quantifiers

Exercise (Parity)

Write a FOC[+] formula for the language

PARITY = {w ∈ {0, 1}∗ | w has an odd number of 1’s}.

20

FOC and TC0

Equivalences:

• FOC[+,×] = FOC[×] [Lange, 2004]

• FOC = FOM (FO with majority quantifiers) and is more

commonly called that

• FOC[+,×] = DLOGTIME-uniform TC0

Things they can do:

• The sum of O(poly(n)) numbers with O(poly(n)) bits each

• The product of O(poly(n)) numbers with O(poly(n)) bits

each [Hesse et al., 2002]

• Division and remainder of two O(poly(n))-bit numbers [Hesse

et al., 2002]

21

Precision in transformers

• UHATs and AHATs only produce rational numbers, while soft

attention produces real numbers.

• Upper bounds on the expressivity of SMATs involve limiting

the precision of the numbers involved.

. . .

. . .

0.7 0.3 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1 . . .

. . .

1 0 0

x0 x1 x2 xn−1

y0 y1 y2 yn−1

0

R Q Q

• infinite

• O(log n)

• O(1)

P
ro
d
u
ce
s

P
re
ci
si
on

Unique-hardSoftmax Average-hard
. . .

. . .

1
3 0 1

3

x0 x1 x2 xn−1

y0 y1 y2 yn−1

1
3

22

Precision in transformers

• UHATs and AHATs only produce rational numbers, while soft

attention produces real numbers.

• Upper bounds on the expressivity of SMATs involve limiting

the precision of the numbers involved.

• Merrill and Sabharwal [2023] argue that O(1) precision is too

small. You need log n bits just to store the number n or 1/n!

• Instead, they use O(log n) bits of precision.

23

Floating-point numbers

mantissa/significand︷ ︸︸ ︷
±1.bbb · · · bbb×2

exponent︷ ︸︸ ︷
±bbb · · · bbb

The significand and exponent combined have p ∈ O(log n) bits

Details aren’t very important:

• How to apportion bits between the significand and exponent

• Does the sign bit count as a bit

• And so on.

24

Main result

Theorem (Merrill and Sabharwal, 2023)

For any O(log n)-bit floating-point transformer encoder T that

recognizes a language L, there is a formula of FOC[+,×] that

defines L.

Merrill and Sabharwal [2023]’s proof converted T to a family of

threshold circuits, but we show how to go straight to FOC[+,×].

25

What’s in a Transformer?

• Addition (+), multiplication, comparison (<) of two numbers

• Exponential function (exp)

• Addition of n numbers (
∑

)

• If layer normalization: division (÷), square root (
√
)

We just need to show that these can be done on O(log n)-bit

floating point numbers. Most of these operations can be reduced

to operations on O(log n)-bit integers.

Exercise

Explain why multiplication of two O(log n)-bit floating point

numbers is definable in FOC[+,×]. How about addition?

26

Summation (iterated addition)

Summation of n O(log n)-bit floating point numbers: just convert

every summand into a fixed-point number

1.011 · 20

1.100 · 2−5

1.111 · 2−10

+ 1.101 · 2−15

?.??? · 2?

⇝

1.011

0.00001100

0.0000000001111

+ 0.000000000000001101

1.011011000111101101

Each number has 2O(log n) = O(poly(n)) bits, and the sum of n

numbers with O(poly(n)) bits is still in FOC[+,×].

27

Exponential function

Compute first p terms of Taylor series:

exp x =

p−1∑
i=0

x i

i !

= 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xp−1

(p − 1)!

If p ∈ O(log n):

• The error will be less than 2−p+1.

• Each term in the series is an iterated product of O(log n)

numbers, expressible in FO[+,×].

• Summation of the terms can also be expressed in FO[+,×].

28

Recap

• O(log n)-precision transformer encoders only recognize

languages in FOC[+,×] = DLOGTIME-uniform TC0.

• Assuming that TC0 ̸= NC1, this implies that
O(log n)-precision transformer encoders cannot solve many
interesting problems:

• deciding whether a Boolean formula is true

• deciding whether a sequence of permutations is the identity

• reconstructing a chess board from chess moves [Merrill et al.,

2024]

29

Open Questions

• Are O(1)-precision transformers equivalent to FO = LTL?

• At O(log n) precision, every operation except summation is in

FO[+,×]. Is there a tighter bound than FOC[+,×]?

• At infinite precision, is it possible to find an upper bound?

30

Lower Bound

Softmax Attention and Related Work

• Bhattamishra et al. [2020] showed that one-state Parikh

automata can be simulated by SMATs.

• Chiang et al. [2023] defined a logic called FOC[+;MOD] and

showed that it can be simulated by SMATs.

• Barceló et al. [2024] defined an extension of LTL with

counting, called LTL[#,+], and showed that it can be

simulated by AHATs.

• Perhaps surprisingly, there isn’t a published proof that

softmax-attention transformers can simulate LTL.

31

Simulating Temporal Logic with Softmax Attention

Now, we show that softmax-attention transformers can simulate a

temporal logic without since but with a counting operator [Yang

and Chiang, 2024]. We call this logic Kt [#,+].

32

Layer Normalization

Our proof relies crucially on layer normalization

• Position-wise function Rd → Rd

• Scales and shifts the components of a vector to have mean β

and standard deviation γ

0 1 2
0
1
2
3

norm−−−→

0 1 2

β − γ

β

β + γ

• In practice β and γ are learned; here, we choose them

33

Dyck-1

Set of all strings over {(,)} that are balanced and nested. That is

• Total number of (equals total number of)

• At no point in the string is the number of) greater than the

number of (

We can test for these constraints using Kt [#,+].

34

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

#[#[Q)] > #[Q(]] = 0 T T T T T T T T

35

Kt [#,+] Example

Dyck-1 is the language of nested and balanced parentheses.

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

((()) ())

Q(T T T F F T F F

Q) F F F T T F T F

#[Q(] 1 2 3 3 3 4 4 4

#[Q)] 0 0 0 1 2 2 3 4

#[#[Q)] > #[Q(]] 0 0 0 0 0 0 0 0

#[Q(] = #[Q)] F F F F F F F T

#[#[Q)] > #[Q(]] = 0 T T T T T T T T

ϕ F F F F F F F T

35

Kt [#,+]

The syntax of Kt [#,+] is defined as follows:

t ::= #[ϕ1]

| t1 + t2

ϕ ::= Qσ σ ∈ Σ

| ϕ1 ∧ ϕ2 | ¬ϕ1

| t1 = t2 | t1 < t2

Other operators (∨, →, >, ≤, ≥) can be defined in terms of the

ones above.

36

More Examples

Language Formula

a∗b∗ #[Qa ∧ (#[Qb] ≥ 1)] = 0

a∗b∗a∗ #[Qb ∧#[Qa ∧ (#[Qb] ≥ 1)] ≥ 1] = 0

Dyck-1 (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

anbncn #[Qb ∧ (#[Qc] = 0)] = #[Qb]

∧#[Qa ∧ (#[Qb ∨ Qc] = 0)] = #[Qa]

∧#[Qa] = #[Qb] ∧#[Qb] = #[Qc] ∧#[Qc] = #[Qa]

hello #[⊤] = 5 ∧ Qo ∧#[Ql ∧#[Qe ∧#[Qh] = 1] = 1] = 2

37

Main Result

Theorem (Yang and Chiang, 2024)

For any formula ϕ of Kt [#,+] that defines a language L, there is a

transformer encoder that recognizes L.

38

Key Idea 1

Use uniform attention to count.

Problem:

• Uniform attention doesn’t count; it averages

|counti |
i + 1

how to get rid of this?

• Position embedding tricks (Day 3) require average-hard

attention

• Instead: Just keep the 1
i+1 for now

39

Key Idea 2

Implement count2,i > count1,i as
1

i+1(count2,i − count1,i) > 0.

Problem: We need a function like

0 1
i+1

−1

1

slope

2(i + 1)

1
i+1(count1,i − count2,i)

co
u
n
t 2

,i
>

co
u
n
t 1

,i

Slope not bounded (i.e.,

not Lipschitz

continuous) ⇒ can’t be

computed by FFNN

40

Key Idea 3

Use layer normalization to make everything ±1.

0 1 2 3
0

1
i+1

2
i+1

1

clip−−→

0 1 2 3

norm−−−→

0 1 2 3

41

Boolean and Count Representations

• To represent Boolean values, we use the following

representations:

true :

[
−1

1

]

false :

[
1

−1

]
• To represent the integer counti in position i , we use:[

counti
i+1

− counti
i+1

]
• These representations have zero mean so that layer

normalization does not shift them up or down

42

Counting

In the following, we show how to simulate a # term in Kt [#,+]

using a uniform attention layer.

Lemma

Let A[∗, 2k : 2k + 1] store a sequence of Boolean values ϕ(i) as

defined above. For any i , let C (i) be the number of positions j ≤ i

such that A[j , 2k : 2k + 1] is true. Then there is a transformer

block that computes, at each position i , and in two other

dimensions 2k ′, 2k ′ + 1, the values −C(i)
i+1 and C(i)

i+1 .

43

Uniform Attention for Averaging

We compute in position i of dimension k , the value C (i)k , which is

the average of all values up to position i in dimension k , The

expression reduces to:

ci ,k =

∑i
j=0 exp(sij)[W

(V)A∗,j]k∑i
j=0 exp(sij)

=

∑i
j=0[W

(V)A∗,j]k∑i
j=0 1

=

∑i
j=0 Ak,j

i + 1

44

Counting Vector

Since Booleans are stored as ±1, the count we compute actually

ends up being 2C (i)+1, which we can easiliy correct with a FFNN.



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 2
i+1

∑
i ϕ(i)− 1

2
i+1

∑
i ϕ(i) + 1
...



FFNN−−−→



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 1
i+1

∑
i ϕ(i)

1
i+1

∑
i ϕ(i)

...



45

Counting Vector

Since Booleans are stored as ±1, the count we compute actually

ends up being 2C (i)+1, which we can easiliy correct with a FFNN.



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 2
i+1

∑
i ϕ(i)− 1

2
i+1

∑
i ϕ(i) + 1
...


FFNN−−−→



...

−2ϕ(i)− 1

2ϕ(i) + 1
...

− 1
i+1

∑
i ϕ(i)

1
i+1

∑
i ϕ(i)

...



45

Linear Constraints

Kt [#,+] can express any linear constraint on counts, that is,

constraints of the form ∑
k∈K

akCk(i) ≥ 0

where the Ck are count terms, the ak are integer coefficients, and

K is a finite set of indices.

46

Testing Linear Constraints

Recall that a count Ck is stored as a pair of numbers Ck
i+1 . Thus we

need to test if∑
k∈K

ak
Ck(i)

i + 1
≥ 0 ⇐⇒ 1

i + 1
+

∑
k∈K

ak
Ck(i)

i + 1
≥ 1

i + 1

Which boils down to testing if a value is ≥ 1
i+1 .

47

Clipping

To test whether this is nonnegative, we construct a feed-forward

layer that computes the function, given any input S(i):

gtz

(
S(i),

1

i + 1

)
= min

(
0.5

i + 1
,
S(i)

i + 1
− 0.5

i + 1

)
−min

(
0,

S(i)

i + 1

)

−1 0 1 2

− 0.5
i+1

0

0.5
i+1

S(i)

gt
z
(S

(i
))

48

Returning to Boolean Values

Use layer normalization to make everything ±1.

0 1 2 3
0

1
i+1

2
i+1

1

clip−−→

0 1 2 3

norm−−−→

0 1 2 3

49

Modal Depth

Observe that all count values become ± 1
i+1 after clipping and layer

normalization. Thus we need to make sure that count values are

never needed after a comparison.

It helps to organize the construction by modal depth The modal

depth of a formula ϕ or term C , which we notate as md(ϕ), is the

maximum level of nesting of # terms. That is,

md(Qσ) = 0 md(C1 + C2) = max(md(C1),md(C2))

md(1) = 0 md(C1 ≤ C2) = max(md(C1),md(C2))

md(¬ϕ) = md(ϕ) md(ϕ1 ∧ ϕ2) = max(md(ϕ1),md(ϕ2))

md(#[ϕ]) = 1 + md(ϕ)

50

Modal Depth Example

ϕ = (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

∧
= =

#

Q(Q)

0

>

#

Q) Q(

Observe that the bottommost counts #[Q(] and #[Q)] are never

needed after the comparison <

51

Main Result

Theorem

For every Kt [#,+] formula ϕ, there exists a masked transformer

encoder which simulates ϕ.

Proof.

Induct on modal depth of ϕ and apply the constructions described

in previous slides!

52

Recap: Lower Bound of Soft Attention

• While AHATs can simulate LTL[#,+], there is currently no

published proof that SMATs can simulate the full LTL logic.

• Uniform attention is used in SMATs to simulate counting

operations.

• Layernorm is used to rescale very small values back to

Booleans.

53

References i

Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted

by transformer encoders with hard attention. In Proceedings of the Twelfth International Conference on

Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=gbrHZq07mq.

David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1 . Journal of Computer

and System Sciences, 41(3):274–306, 1990. doi:https://doi.org/10.1016/0022-0000(90)90022-D.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Transformers to Recognize

Formal Languages. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 7096–7116, 2020. doi:10.18653/v1/2020.emnlp-main.576.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer encoders. In

Proceedings of the 40th International Conference on Machine Learning (ICML), volume 202 of Proceedings of

Machine Learning Research, pages 5544–5562, 2023. URL

https://proceedings.mlr.press/v202/chiang23a.html.

William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold circuits for division

and iterated multiplication. Journal of Computer and System Sciences, 65(4):695–716, 2002.

doi:https://doi.org/10.1016/S0022-0000(02)00025-9.

Neil Immerman. Descriptive Complexity. Springer, 1999.

Najoung Kim and Sebastian Schuster. Entity tracking in language models. In Anna Rogers, Jordan Boyd-Graber,

and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 3835–3855, 2023. doi:10.18653/v1/2023.acl-long.213. URL

https://aclanthology.org/2023.acl-long.213.

Klaus-Jörn Lange. Some results on majority quantifiers over words. In Proceedings of the 19th IEEE Annual

Conference on Computational Complexity, pages 123–129, 2004. doi:10.1109/CCC.2004.1313817.

54

https://openreview.net/forum?id=gbrHZq07mq
https://doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://proceedings.mlr.press/v202/chiang23a.html
https://doi.org/https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.18653/v1/2023.acl-long.213
https://aclanthology.org/2023.acl-long.213
https://doi.org/10.1109/CCC.2004.1313817

References ii

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In Advances in Neural

Information Processing Systems, volume 36, pages 52453–52463, 2023. URL https://proceedings.neurips.

cc/paper files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In Proc. ICML,

2024. URL https://arxiv.org/abs/2404.08819.

Denis Paperno. On learning interpreted languages with recurrent models. Computational Linguistics, 48(2):

471–482, June 2022. doi:10.1162/coli a 00431. URL https://aclanthology.org/2022.cl-2.7.

Johan van Benthem and Thomas Icard. Interleaving logic and counting. The Bulletin of Symbolic Logic, 29(4):

503–587, 2023. doi:10.1017/bsl.2023.30.

Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into softmax

transformers. In Proceedings of the Conference on Language Modeling, 2024. URL

https://arxiv.org/abs/2404.04393. To appear.

55

https://proceedings.neurips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://arxiv.org/abs/2404.08819
https://doi.org/10.1162/coli_a_00431
https://aclanthology.org/2022.cl-2.7
https://doi.org/10.1017/bsl.2023.30
https://arxiv.org/abs/2404.04393

	Upper bound
	Lower Bound

