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Introduction



Join our family

Online seminars on Formal
Languages and Neural
Networks (FLaNN).

Learn more about FLaNN on
https://flann.super.site/

Invite link
https://discord.gg/zjradK75

The link will expire in 7 days. Please feel
free to share it with anyone you think might
be interested. I chose not to post it on the
ESSLLI channel to ensure it’s shared with
those who have a genuine interest rather
than just curiosity about the link destina-
tion.
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Today’s Goals

• Recap the course

• Open issues in expressivity

• General expressivity discussion/questions

• Discuss learnability vs expressivity

2



Course Review



Analyzing transformers

How to evaluate a ‘Language model’?

Empirically.

• train a model on corpus data, evaluate trained model on NLP
task benchmarks

• probe a trained model using advanced correlational techniques

Theoretically.

• ??
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Analyzing transformers

How to evaluate a ‘Language model’?

Empirically.

• train a model on corpus data, evaluate trained model on NLP
task benchmarks

• probe a trained model using advanced correlational techniques

Theoretically.

• Logical satisfaction

• Circuit families

• Formal language recognition

What are the advantages of each of these three?
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Decisions we made
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Decisions we made

Definition of recognition
To use it as a language
recognizer, we add an output
layer that converts it to a
probability.
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Overview

9



Open Issues in Expressivity



Comparing the Variants

• Can average-hard attention transformers simulate
unique-hard?

• Can softmax-attention transformers simulate unique-hard?

• Can softmax-attention transformers simulate average-hard?
Or the other way around?

• Is there a transformer variant that is trainable, yet still easier
to analyze than softmax?

• What happens if we vary the feed-forward layer? For example,
using GeLU activations allow us to compute position-wise
multiplication (approximately).
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Precision

• Are O(1)-precision transformers equivalent to FO = LTL?

• Does the Kt [#,+] lower bound apply to O(log n) precision
transformers?

• At infinite precision, is it possible to find an upper bound?

• Do we need to consider infinite precision? That is, is there a
difference between O(log n) and infinite precision? Or even
poly(n) precision?
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Tightening Bounds

• At O(log n) precision, every operation except summation is in
FO[+,×]. Is there a tighter upper bound than FOC[+,×]?

• The Kt [#,+] lower bound only considers uniform attention.
Is there a tighter lower bound than this?

• Can we exactly characterize softmax-attention transformers in
terms of logic or circuits? What about average-hard
attention?
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Your Questions on Expressivity!



Expressivity vs
Learnability and Trainability



A common question

What is the relationship between learnability and expressivity?

Does one affect the other?

can you study expressivity without learnability, or vice versa?

why or why not?

13



What are the ingredients of learning?
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What are the ingredients of learning?

• a learner

• a thing to learn (a target)

• data

• hypotheses
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Learnability Presupposes Expressivity [Rawski and Heinz, 2019]
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Learnability Presupposes Expressivity [Rawski and Heinz, 2019]

We also care about

“circumstances under which these hypotheses stabilize to an
accurate representation of the environment from which the

evidence is drawn” [Osherson et al., 1986]
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Artificial Grammar Learning Experiments

L(G) test

test

training

Data is drawn from a target/Intended set I

The subject is given a training/familiarization set F

The subject is then given a testing/Discrimination set D
18



Issues in AGL experiments [De Santo and Rawski, 2022]

Design

• Identifying relevant classes of patterns

• Finding minimal pairs of stringsets

• Finding sets of stimuli that distinguish those stringsets

Interpretation

• Identifying the class of patterns subject has generalized to
• Inferring the properties of the mechanism involved

• ideally properties common to all mechanisms capable of
identifying that class of patterns (like non-counting)
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A simple learning experiment

Let’s imagine a very simplified learning setup:

Our intended set I will be the context-free language AnBn

The dataset F will contain one string, i.e. {AABB}
What possible language(s) might a subject (human or machine)
infer?

Obviously, one is our desired target AnBn.

Any others?
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Some possible generalizations

• memorization: {AABB}
• All of the A’s precede all of the Bs: AnBm

• Same but they must be even length: AnBm
even

• At Least as many A’s as B’s: AnBn+m or vice versa

• The number of A’s equals the number of Bs: |w |a = |w |b
• The number of A’s is finitely bounded: AnBn, n ≤ 2

• Any combination of A’s and B’s: {A,B}∗

• Any even length combination of A’s and B’s: {A,B}∗even
How is the learner supposed to decide between these?
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Struggles with Generalization [Jäger and Rogers, 2012]
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What should be in D?

We would like to decide between AnBn and AnBm.

What kinds of test items would allow this?

Recall, the participant has seen AABB

23



What should be in D?
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Testing ordered vs unordered languages

A common learning setup is to contrast ‘ordered’ vs ‘unordered’
languages

For example, Assume an alphabet of symbols Σ = {a, b, c , d , e}.
The language Lab, only allows b after a (but not vice-versa)

Lab would contain strings like ab, acb, abcde.

A ‘free order’ language contains sequences like ba, bcdea, bacd
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Testing ordered vs unordered languages

This ‘free-order’ language is Σ∗, so it contains Lab as well
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Experimental Solution: Symmetric Differences in test sets

Remember: the subject has gotten AABB

Let’s say D contains the test item AAB. Which hypotheses does
this rule out?

Does this test the star-free boundary? or finite-state/regular?
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Experimental Solution: Symmetric Differences in test sets

Remember: the subject has gotten AABB

Let’s say we give them a test item AAB. Which hypotheses would
accept/reject rule out?

• These are not in AnBn (CF) but are in the set AnBm (regular),

• Subjects that generalize to AnBn will find AAB surprising;
those that generalized to AnBm will not.

• They are also not in AnBn
even , which is regular, but are in

An+mBm, which is CF.

• Thus these test/discrimination stimuli do not test the finite
state boundary.

• what about AAAB?
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An Example from RNNs

• Weiss et al. [2022] study how well Recurrent Neural Networks
(RNNs) learn to recognize acceptable email addresses.

• The language of valid email addresses is a regular language,
easily expressed with a DFA.

• One example from their paper: They trained an RNN to 100%
accuracy on a 40,000 sample training set and a 2,000 sample
test set.

• They refined a method to extract, from the learned RNN, a
DFA approximation of it.

• Comparing the original and extracted DFA, they could find
possible counterexamples.

• They find the RNN actually makes very stupid errors!
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An Example from RNNs

29



An Example from RNNs

• They note such cases are “annoyingly frequent: for many
RNN-acceptors with 100% train and test accuracy on large
test sets, our method was able to find many simple
misclassified examples.”

• They state this reveals the “brittleness in generalization” of
trained RNNs,

• they suggest that evidence based on test-set performance
“should be interpreted with extreme caution.”
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Another example [Oliva and Lago-Fernández, 2019]

• RNN with only 2 neurons in its hidden state trained on
“Even-A” language.

• Input: stream of strings separated by $ symbol

• Neuron 0: all even As, and $ symbol after a rejected string

• Neuron 1: all B’s following an even number of A’s, and $ after
an accepted string.
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Expressivity of Recurrent neural Networks

Theorem ([Rabusseau et al., 2019])

Weighted FSA are expressively equivalent to second-order linear
RNNs (linear 2-RNNs) for computing functions over sequences of
discrete symbols

Theorem ([Merrill et al., 2020])

‘saturated’ RNNs accept exactly the regular languages

Theorem ([Casey, 1996])

A finite-dimensional RNN can robustly perform only finite-state
computations.
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Expressivity of Recurrent neural Network

Theorem

An RNN with finite-state behavior necessarily partitions its state
space into disjoint regions that correspond to the states of the
minimal FSA
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Learnability vs Trainability

What does it mean for a transformer to be ‘learnable’?

It is more helpful to distinguish learnability from trainability.

A transformer can be trainable or not, for some variety of functions

A formal language can be learnable or not, for some variety of
model

The difference is mostly between learning vs optimization
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Are transformers trainable?

For some varieties, clearly yes.

What about the varieties we considered?

We explicitly designed our models to probe expressivity, without
caring about their trainability.

Are UHATs trainable?

How would one make them trainable?

What about AHATs? SMATs?
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Some Recent work on Transformer Trainability

• Transformers Learn In-Context by Gradient Descent
[Von Oswald et al., 2023]

• Transformers learn through gradual rank increase
[Abbe et al., 2024]

• Linear attention is (maybe) all you need (to understand
transformer optimization)
[Ahn et al., 2023]

• One step of gradient descent is provably the optimal
in-context learner with one layer of linear self-attention
[Mahankali et al., 2023]

• Why are sensitive functions so hard for transformers?
[Hahn and Rofin, 2024]

• Inductive Biases and Variable Creation in Self-Attention
Mechanisms
[Edelman et al., 2022]
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Hahn & Rofin 2024

• We noted that UHAT and SMAT can represent PARITY
• However, trainable transformers find a difficulty with PARITY
(a sharp loss landscape)

• PARITY is sensitive: flipping any bit flips the string’s parity
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Hahn & Rofin 2024

• H&R prove that transformers whose output is sensitive to
many parts of the input string inhabit isolated points in
parameter space

• this leads to a low-sensitivity bias in generalization.
• this holds even with finite precision, hard attention, and
Lipschitz-continuous layer norm.
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The Moral of the Learning Story

• Learnability is subtly different than trainability

• Expressivity is a precursor to learnability

• Expressivity complements trainability
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Final Words

Thanks for the Great Course from All of Us!
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