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Chapter 1

Introduction

1.1 Overview

This course is a survey of current knowledge about expressivity of transformers from
the point of view of formal languages.

Transformers [Vaswani et al., 2017] are the neural network architecture underlying
nearly every state-of-the-art model in natural language processing tasks, and
have been extended to other fields as well. We will describe them in more detail
in Section 1.4.

Expressivity studies the abilities and limitations: what class of problems can and
can’t be solved intrinsically by a particular class of models (here, transformers)?
This differs from learnability, which concerns what problems models can or
can’t be trained to solve from data instances. Learnability is probably a more
fundamental question, but expressivity is a prerequisite for learnability and the
focus of this course. This is because there is No Free lunch: A model which
successfully learns/induces some class of tasks pays for it by failing to learn other
classes of tasks [Wolpert, 2021]. In short, a model’s architecture determines its
learnability, and knowledge is a prerequisite of learning.

The two seminal papers in this area are often summarized as follows:

Transformers are Turing-complete [Pérez et al., 2019, Pérez et al., 2021].

Transformers, given a string of 0’s and 1’s, cannot tell whether the number
of 1’s is odd or even [Hahn, 2020].

How can both of these statements be true? They rely on different assumptions about
what a transformer is and what it means for a transformer to recognize a formal
language. One of the goals of this course is to disentangle these assumptions and help
you to understand how all the results in this area of research fit together.

The general picture that emerges has three parts (which correspond to days 2–4 of
this course).

The claim that transformers cannot recognize PARITY (whether the number of
1’s is odd or even) is only true for transformers with unique-hard attention, which
are simpler than the transformers used in practice. Continued investigation of these
transformers has led to exact characterizations: for instance, transformers with unique-
hard attention and strict future-masking is exactly equivalent to the star-free languages.

1



Chapter 1. Introduction 2

The claim that transformers are Turing-complete relies crucially on the assumption
that a transformer can take any number of intermediate steps before generating a
final answer. This theoretical finding anticipated, by several years, the empirical
finding that transformer language models reason better when encouraged to generate
a scratchpad [Nye et al., 2022] or chain of thought [Wei et al., 2022].

Finally, for transformers that use soft-attention (as real transformers do), we don’t
have any exact characterizations yet. An upper bound is DLOGTIME-uniform TC0 or
FOM[BIT]. Assuming the widely-believed conjecture that TC0 ̸= NC1, this excludes
some natural-looking problems like Boolean formula evaluation (that is, accepting
true formulas like (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1 ∨ 1)). Lower bounds are various extensions of
first-order logic or linear temporal logics that add counting operators. This includes
languages like the Dyck language. But the gap between these upper and lower bounds
still seems rather wide, and narrowing this gap is an area of ongoing research.

Understanding the expressivity of transformers is crucial for both theory and
practice. Theoretically, it helps us identify the limits of their capabilities, avoiding
costly and tiresome experimentation. Practically, it informs the design of more effective
models and algorithms, optimizing their performance for specific tasks in natural
language processing and beyond.

1.2 Preliminaries

We write N for the set of natural numbers including 0, and N>0 for the natural numbers
excluding 0. We write [n] for the set {0, . . . , n− 1} (note: not {1, . . . , n}).

We write log x for the natural logarithm of x and log2 x for the base-2 logarithm
of x. In O(log n), the base does not matter, so we omit it. We write either ex or
expx for the exponential function and sometimes we write exp2 x for 2x. We write
O(poly(n)) =

⋃
k≥0O(nk).

1.2.1 Linear algebra

Variables that stand for vectors are lowercase boldface letters: a,b, . . . . We write 0
for the zero vector. Variables that stand for matrices are uppercase boldface letters:
A,B, . . . .

If x ∈ Rd, we will normally write the components of x as x0, . . . , xd−1 (note: 0-
based indexing). But sometimes this is not convenient, so we also use a more code-like
notation where the components of x are x[0], . . . ,x[d− 1]. If we write x0,x1, these
are names of two different vectors, and similarly for x(0),x(1). So, subscript i and
superscript (i) mean “the i-th thing,” but bracketed [i] means “the i-th element of.”

For i ∈ [d], we write e(i) for the i-th unit vector of the standard basis of Rd, that
is, the vector with a 1 in the i-th component and 0 everywhere else.

1.2.2 Strings

If A is any set, we write A∗ for the set of finite sequences of elements A. If Σ is a
finite alphabet (set of symbols), then Σ∗ is called the set of strings over A. We also
often deal with sequences of vectors; we write (nonstandardly) (Rd)∗ for the set of
finite sequences of vectors in Rd.

If a ∈ A∗, we write |a| for the length of a and ai or a[i] for the i-th element of a.
As with vectors, we number the elements starting from 0, not 1. If a,b ∈ A∗, we write
ab, a ◦ b, or sometimes a · b for the concatenation of a and b.

Expressivity of Transformers Version of August 2, 2024



Chapter 1. Introduction 3

A function from A∗ to B∗ is length-preserving if for all a ∈ A∗, we have |a| = |f(a)|.
In this case, we write f : A∗ lp→ B∗.

1.2.3 Miscellaneous

Iverson bracket For any true or false statement ϕ, we write

I[ϕ] =

{
1 if ϕ is true

0 if ϕ is false.
(1.1)

Dot notation We use the following “dot notation,” unusual in mathematics but
common in programming languages. Whenever we define a neural network or a piece
of a neural network as a function f , any variable x appearing in the definition of f
can be referred to later using the notation f.x. For example, if f : Rd → Rd then we
may refer to the dimension of its input/output space as f.d.

Exercise 1.1. Did you catch all of the following idiosyncratic notations?

1. Does [n] start with 0 or 1? Does it end with n− 1 or n?

2. If x is a vector (or string), are its elements numbered starting from 0 or 1?

3. If x is a vector (or string), is its first element x0 or x[0]?

4. What does (Rd)∗ mean?

5. What does f : A∗ lp→ B∗ mean?

6. What does f.x mean?

1.3 Formal language and complexity theory

In this section, we’ll learn about a subclass of regular languages called the star-free
regular languages (Section 1.3.1), which can be characterized by subclasses of finite
automata and regular expressions, as well as by two logics, first-order logic and linear
temporal logic. In the following section, we’ll learn about a new model of computation,
Boolean circuits (Section 1.3.2).

Why so many different formalisms? Much like a camera, each provides a different
“lens” into aspects of computation:

• Automata provide insight into sequential processing of strings and, by extension,
programs.

• Logical formulas are more human-readable (especially for ESSLLI participants,
presumably) and logics provide very fine control over computational resources.

• Circuits have the clearest connection with neural networks, which are essentially
arithmetic circuits with some extra operations. They provide insight into parallel
processing of strings.

Expressivity of Transformers Version of August 2, 2024



Chapter 1. Introduction 4

1.3.1 Star-free regular languages

Star-free languages are named for their characterization by star-free regular expressions.
While we won’t use star-free regular expressions later, understanding the origin of the
name provides valuable intuition.

Definition 1.2 (star-free regular language). The star-free languages over a finite
alphabet Σ are exactly those that can be constructed using concatenation, union and
complement from the empty language, {ϵ}, and Σ. That is, they are the languages of
star-free regular expressions, defined in BNF as:

α ::= ∅ | ϵ | σ | α1 ∪ α2 | α1α2 | αC (1.2)

where σ ∈ Σ.

Example 1.3. Let Σ = {a, b}.

• Σ∗ is star-free because Σ∗ = ∅C.

• (ab)∗ is star-free because (ab)∗ = (bΣ∗ ∪ Σ∗a ∪ Σ∗aaΣ∗ ∪ Σ∗bbΣ∗)C.

• (aa)∗ is regular but not star-free.

For more on star-free languages, see the survey by Pin [2020], and for their history,
see Straubing [2018].

Counter-free automata

In the decades after these discoveries, researchers noticed deep equivalences between
star-free languages and behaviors that were considered “counter-free”:

Definition 1.4 (counter-free language). A regular language is counter-free iff there
exists some n > 0 (depending only on the language) such that for all strings u,v,w ∈
Σ∗, where |v| ≥ 1, and for all i ≥ 1

uvnw ∈ L⇔ uvn+iw ∈ L.

Jäger and Rogers [2012] interpret this definition as a “cognitive” characterization
of star-freeness:

“Any cognitive mechanism that can distinguish member strings from
non-members of a Star-Free language must be sensitive, at least, to the
order of the length k blocks of symbols, for some fixed k and some fixed
maximum length of the sequences of blocks, that occur in the presentation
of the string.

If the strings are presented as sequences of symbols in time, then this
corresponds to being sensitive to the set of sequences, up to that maximum
length, of the length k blocks that have occurred at any prior point.

Any cognitive mechanism that is sensitive only to the set of fixed length
sequences of length k blocks of symbols in the presentation of a string will
be able to recognize only Star-Free languages.”

Such a characterization holds for any mechanism, human or neural network. Many
linguistic phenomena, including virtually all phonology and morphology, are character-
ized by Star-Free Languages [Heinz, 2018]. Let’s look at a star-free linguistic example
given at ESSLLI 2010 by Jim Rogers: a (simplified) syntactic phenomenon called
possessor recursion. The main idea is that, if having n possessors is grammatical, n+ i
must also be grammatical. In English, we can create pairs as below:

Expressivity of Transformers Version of August 2, 2024
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Example 1.5 (English possessor recursion).

my mother’s mother’s mother resembled my mother ∈ L
my mother’s mother’s (mother’s)︸ ︷︷ ︸

≥1

mother resembled my mother ∈ L

Now let’s imagine an alien language where possessor recursion is constrained to
only even numbers. So in this case, the following intuitions would be expected:

Example 1.6 (Martian possessor recursion).

my mother’s mother’s mother resembled my mother ∈ L
my mother’s mother’s mother’s mother resembled my mother /∈ L

This additional constraint violates non-counting behavior, and consequently is not
star-free (but is still Regular).

We can also apply this property of counter-freeness directly to DFAs:

Definition 1.7 (counter-free automaton). Let M = (Q,Σ, δ, q0, F ) be a DFA. Define

the relation q
w−→ r, where q, r ∈ Q and w ∈ Σ∗, to mean “If M is in state q and reads

string w, then it ends up in state q.” That is:

• q
ϵ−→ q (where q ∈ Q).

• q
σv−−→ s (where q, s ∈ Q, σ ∈ Σ, and v ∈ Σ∗) iff, for some r ∈ Q, we have

δ(q, σ) = r and r
v−→ s.

We say that M is counter-free iff there is an N such that for all w ∈ Σ∗ and n ≥ N ,

the relations
wn

−−→ and
wn+1

−−−→ are the same.

Example 1.8. Intuitively, a counter-free DFA is one that can test whether something
happens, but not how many times it happens. For every cycle q

w−→ q, w cannot be
written as xk where x ∈ Σ∗ and k > 1.

(a) The following DFA, which recognizes (ab)∗, is counter-free:

q1 q2

q3

a

b

b

a

a, b

This is counter-free because the only cycles are on ab (from q1 to itself), a and
b (from q3 to itself), and none of these strings is of the form xk for k > 1.

(b) The following DFA, which recognizes (aa)∗, is not counter-free:

q1 q2

q3

a

b

a

b

a, b

Expressivity of Transformers Version of August 2, 2024
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This is not counter-free because it has a cycle on aa, which is a2.

Lemma 1.9. If languages L1 and L2 are counter-free then

1. L1 ∪ L2 is counter-free.

2. L1 − L2 is counter-free.

3. L1 ∩ L2 is counter-free.

4. L1 ◦ L2 is counter-free.

Theorem 1.10 (Schützenberger, 1965, McNaughton and Papert, 1971). For any
regular language L, the following are equivalent:

• L is star-free.

• L is counter-free.

• Its minimal DFA is counter-free.

Thus, in Example 1.8(b), the DFA shown is the minimal DFA for (aa)∗; since it is
not counter-free, (aa)∗ is not star-free.

First-order logic

A formal language can also be defined as a set of finite strings that satisfy a closed
formula of a logic. This section is a significantly expanded version of Section 5.3 of
the survey by Strobl et al. [2024b]; for more information, see the handbook chapter by
Thomas [1997].

Example 1.11. Let Σ = {a, b}. The formula

ϕ = ∀x.∀y.Qa(x) ∧Qb(y) → x < y (1.3)

defines the regular language a∗b∗. The variables (x, y) are interpreted as positions of
a string w, and Qa(i) is true iff wi = a and Qb(i) is true iff wi = b. So the formula
says that every a must precede every b, which is true iff the string matches a∗b∗.

We first define the syntax of first-order logic with order (FO, sometimes written as
FO[<] to emphasize the availability of an order relation <).

Definition 1.12. The formulas of FO are given by the BNF grammar:

ϕ ::= Qσ(x) σ ∈ Σ

| x = y | x < y

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1
| ∀x.ϕ1 | ∃x.ϕ1

(1.4)

where x, y, . . . are variables. The free variables of a formula are defined as follows:

FV(Qσ(x)) = {x} σ ∈ Σ

FV(x = y) = {x, y}
FV(x < y) = {x, y}

FV(ϕ1 ∧ ϕ2) = FV(ϕ1) ∪ FV(ϕ2)

FV(ϕ1 ∨ ϕ2) = FV(ϕ1) ∪ FV(ϕ2)

FV(¬ϕ1) = FV(ϕ1)

FV(∀x.ϕ1) = FV(ϕ1) \ {x}
FV(∃x.ϕ1) = FV(ϕ1) \ {x}.

(1.5)

Expressivity of Transformers Version of August 2, 2024



Chapter 1. Introduction 7

A formula is closed if it has no free variables. For example, FV(∃y.x < y) = {x},
while the formula in Eq. (1.3) is closed.

We use a number of shorthand notations:

ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 implication (1.6)

ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) if and only if (1.7)

ϕ1 ⊕ ϕ2 = ¬(ϕ1 ↔ ϕ2) exclusive or (1.8)

The semantics of FO defines whether formulas are true in various logical structures.
Here, we are only interested in logical structures that correspond to strings. So we
skip the definition of logical structure and go straight to the definition of whether a
formula is true for a string.

Definition 1.13. Let w = w0 · · ·wn−1 be a string over Σ, and let I be an interpreta-
tion, or a mapping from variables to [n]. We define w, I |= ϕ (“w and I satisfy ϕ”) as
follows:

w, I |= Qσ(x) if wI(x) = σ

w, I |= x = y if I(x) = I(y)

w, I |= x < y if I(x) < I(y)

w, I |= ϕ1 ∧ ϕ2 if w, I |= ϕ1 and w, I |= ϕ2[I]

w, I |= ϕ1 ∨ ϕ2 if w, I |= ϕ1 or w, I |= ϕ2

w, I |= ¬ϕ1 if w, I ̸|= ϕ1

w, I |= ∀x.ϕ1 if w, I[x 7→ i] |= ϕ1 for all i ∈ [n]

w, I |= ∃x.ϕ1 if w, I[x 7→ i] |= ϕ1 for some i ∈ [n]

(1.9)

Above, the notation I[x 7→ i] stands for the mapping that sends x to i, and sends any
other variable y to I(y).

If w, I |= ϕ, and ϕ is a closed formula, we can simply write w |= ϕ. The language
defined by a closed formula ϕ is L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

Example 1.14. Let ϕ be as in Eq. (1.3):

ϕ = ∀x.∀y.Qa(x) ∧Qb(y) → x < y.

Here are some examples of strings and interpretations that do or don’t satisfy ϕ.

abb, {x 7→ 0} |= Qa(x)

abb, {y 7→ 0} ̸|= Qb(y)

abb, {y 7→ 1} |= Qb(y)

abb, {y 7→ 2} |= Qb(y)

abb, {x 7→ 0, y 7→ 0} ̸|= x < y

abb, {x 7→ 0, y 7→ 1} |= x < y

abb, {x 7→ 0, y 7→ 2} |= x < y

abb, {x 7→ 0, y 7→ 0} |= Qa(x) ∧Qb(y) → x < y

abb, {x 7→ 0, y 7→ 1} |= Qa(x) ∧Qb(y) → x < y

abb, {x 7→ 0, y 7→ 2} |= Qa(x) ∧Qb(y) → x < y

abb, {x 7→ 0} |= ∀y.Qa(x) ∧Qb(y) → x < y

Expressivity of Transformers Version of August 2, 2024
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Example 1.15. As a slightly more complicated example of what can be defined in
FO, let

FIRST(x) = ¬∃y.y < x (1.10)

SUCC(x, y) = x < y ∧ ¬∃z.x < z < y (1.11)

LAST(x) = ¬∃y.y > x (1.12)

Then

ϕ = (∀x.FIRST(x) → Qa(x))

∧ (∀x.∀y.SUCC(x, y) → ((Qa(x) ∧Qb(y)) ∨ (Qb(x) ∧Qa(y))))

∧ (∀y.LAST(x) → Qb(x))

(1.13)

defines the language (ab)∗.

Lemma 1.16. (The class of languages definable in) FO has the following closure
properties:

1. FO is closed under concatenation: if L1, L2 ∈ FO, then L1 ◦ L2 ∈ FO.

2. FO is closed under finite iteration: if L ∈ FO, then Li ∈ FO for all i ∈ N.

Theorem 1.17 (McNaughton and Papert, 1971). FO defines exactly the class of
star-free regular languages.

Example 1.18. As mentioned earlier, virtually all phonological phenomena are
characterized by Star-Free languages, and therefore are describable with First-Order
Logic. For example, one common phonological constraint is that every word must
have exactly one primary stressed syllable. If we imagine our alphabet symbols are p
for primary stress and s for secondary stress, we can describe this constraint simply:

ϕ = (∃x.Qp(x) ∧ ∀y.(Qp(y) → x = y)) (1.14)

Linear temporal logic

In linear temporal logic (LTL) [Kamp, 1968], each formula implicitly depends on a
single time point (or position). Here, we use a variant that employs only the since
operator, which is equally expressive as the complete version [Gabbay et al., 1980].

Example 1.19. Let Σ = {a, b, #}.

• The formula ϕ = Q# defines the language Σ∗#, which contains all and only
strings with a # in the last position.

• The formula ϕ = Q# ∧ (Qb since Q#) defines the language Σ∗#b∗#. You may
read it as, “The last symbol is #, and since the previous #, it’s been all b’s.”

• The formula ϕ = Q# ∧ (Qb since (Q# ∧ (Qa since Q#))) defines the language
Σ∗#a∗#b∗#.

Definition 1.20 (linear temporal logic). The syntax of LTL is defined as follows:

ϕ ::= Qσ σ ∈ Σ

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1
| ϕ1 since ϕ2

(1.15)

Expressivity of Transformers Version of August 2, 2024
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For any input string w = w0 · · ·wn−1 and position i ∈ [n], we define w, i |= ϕ as
follows:

w, i |= Qσ if wi = σ

w, i |= ϕ1 ∧ ϕ2 if w, i |= ϕ1 and w, i |= ϕ2

w, i |= ϕ1 ∨ ϕ2 if either w, i |= ϕ1 or w, i |= ϕ2

w, i |= ¬ϕ1 if w, i ̸|= ϕ1

w, i |= ϕ1 since ϕ2 if there is a j < i such that w, j |= ϕ2, and

for all k such that j < k < i, we have w, k |= ϕ1

(1.16)

To use a formula ϕ of LTL to define a language over Σ, for a w ∈ Σ∗ of length n
we supply w as input and designate the last position as the output position, so that
w ∈ L(ϕ) if and only if w, n− 1 |= ϕ.

Perhaps surprisingly, LTL is exactly as expressive as FO over strings, and thus is
another equivalent formalism to those we have seen so far.

Theorem 1.21 (Kamp 1968, Gabbay et al. 1980). LTL defines the exactly the class
of star-free regular languages.

1.3.2 Circuit complexity

This section is an expanded version of Section 5.2 of the survey by Strobl et al. [2024b].
For more details, please see the textbook by Arora and Barak [2009].

For the rest of this chapter, we deal a lot with bits. We write log n for ⌈log2 n⌉,
which is the number of bits needed to represent a number in [n].

Circuits operate on binary values, so for the rest of this section, we assume
Σ = {0, 1}. (If we want to use circuits to model sets of strings over an alphabet Σ, we
can choose a fixed-length encoding of the symbols of Σ as strings of b = log |Σ| bits
and encode the value of the i-th input symbol into positions ib to ib+ (b− 1).)

Example 1.22. Here’s a circuit with input length 2. It computes the XOR function.
We draw the inputs at the bottom and the output at the top.

s1 s2

∨ ∧

¬

∧
t

Definition 1.23 (Boolean circuits). A (Boolean) circuit C with input length n is a
directed acyclic procedural graph with

1. n nodes s0, . . . , sn−1 with zero fan-in, designated as input nodes:

si

· · ·
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2. zero or more fan-in (in-degree) gate nodes, each labeled with a function:

¬
· · ·

∧

· · ·

· · ·
∨

· · ·

· · ·

• NOT (¬), with fan-in one.

• AND (∧), with arbitrary fan-in. (An AND gate with fan-in zero always has
value 1.)

• OR (∨), with arbitrary fan-in. (An OR gate with fan-in zero always has
value 0.)

3. A node t, which can be either an input or gate node, is designated the output of
the circuit.

t

· · ·

Given an input string w ∈ {0, 1}n, each input node si is assigned the value wi,
and each gate node labeled f computes its value by applying f to the values of its
in-neighbors.

We can think of the circuit as computing a Boolean function C : {0, 1}n → {0, 1},
mapping each input string to the value of t.

The depth of C, denoted depth(C), is the length of the longest directed path from
any si to t. The size of C, denoted |C|, is the number of nodes in C.

Example 1.24. The longest path in C in Example 1.22 is 3, therefore our depth(C) =
3. The number of nodes in C is 6, therefore |C| = 6.

s0 s1

∨ ∧

¬

∧
t

depth(C) = 3

s0 s1

∨ ∧

¬

∧
t

|C| = 6

Definition 1.25 (Boolean circuit families). A circuit family is a sequence C = (Cn)n∈N
such that for each n, Cn is a circuit with input length n. We treat C as a function on
{0, 1}∗ as follows.

For every w ∈ {0, 1}∗ with length n, C(w) = Cn(w). Then the language defined
by C is L(C) = {w ∈ {0, 1}∗ | C(w) = 1}. The depth and size of C are the functions
n 7→ depth(Cn) and n 7→ |Cn|.

Since the depth and size of a circuit family are functions, we are interested in how
they depend asymptotically on n. In particular, since transformers have constant
depth, circuit classes with constant depth are of particular interest.
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Definition 1.26 (ACk and NCk). We define the following classes of languages:

• ACk is the class of languages that can be recognized by families of circuits with
unbounded fan-in, O(poly(n)) size, and O((log n)k) depth.

• NCk is the class of languages that can be recognized by families of circuits with
fan-in at most 2, O(poly(n)) size, and O((log n)k) depth.

A circuit family contains a different circuit for each length n, with no constraint
on the relationship between the circuits. This has some surprising consequences.

Example 1.27. Let L be any unary language, that is, L ⊆ {1}∗. For each n ∈ N, if
1n ∈ L, let Cn be a circuit that always has value 1 (an AND gate with fan-in zero),
and if 1n ̸∈ L, let Cn be a circuit that has value 0 (an OR gate with fan-in zero). Then,
L is recognized by a circuit family with O(n) size and O(1) depth, and is therefore in
AC0, even if it is undecidable.

To prevent such consequences, we impose a DLOGTIME-uniform restriction, which
says that, given n, the circuit Cn can be constructed in logarithmic time, in the
following sense.

Definition 1.28 (uniformity, Barrington et al., 1990). Let C = (Cn)n∈N be a circuit
family, and assume that the nodes of Cn are numbered from 0 to |Cn| − 1. We say
that C is DLOGTIME-uniform if there is a (deterministic) Turing machine that runs
in logarithmic time and accepts those tuples ⟨f, i, j, 1n⟩ such that in Cn, node i has
label f and there is an edge from node i to node j.

We didn’t include circuits in our tour of characterizations of star-free languages
(Section 1.3.1), because star-free languages don’t have a nice characterization in terms
of circuits (to our knowledge), but a mild extension does:

Theorem 1.29 (Barrington et al., 1992). FO[MOD], which is FO extended with
predicates MODr,m(x) which are true just in case x ≡ r (mod m), defines exactly the
regular languages in AC0.

1.4 Transformers

In this section, we define transformers and relevant variants, and how transformers
are used to describe formal languages. This section is adapted from Section 4 of the
survey by Strobl et al. [2024b].

Transformers are composed of an input layer (Section 1.4.1), one or more hidden
layers (Section 1.4.5), and an output layer. The inputs and outputs of the layers are
sequences of vectors, which we treat as members of (Rd)∗.

1.4.1 Input layer

Strings are initially mapped to sequences of vectors by emb : Σ∗ lp→ (Rd)∗, which is
the sum of a word embedding WE: Σ → Rd and a position(al) embedding or encoding
PEn : [n] → Rd for n ∈ N>0:

emb(w0 · · ·wn−1)[i] = WE(wi) + PEn(i). (1.17)

In theoretical constructions, the word embedding can be any computable function.
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The original transformer paper [Vaswani et al., 2017] introduced the following
position embedding:

PEn(i)[j] =

{
sin(10000−j/d · i) if j even

cos(10000−(j−1)/d · i) if j odd.
(1.18)

Theoretical papers have explored other position embeddings, including i itself [Pérez
et al., 2021], i/n [Yao et al., 2021, Chiang and Cholak, 2022], and 1/i or 1/i2 [Pérez
et al., 2021].

1.4.2 Attention

Scaled dot-product self-attention with d input/output dimensions and dhid key/value
dimensions is a function

att : (Rd)∗
lp→ (Rd)∗

X 7→ Y (1.19)

Q[i] = WQ(X[i]) (1.20)

K[j] = WK(X[j]) (1.21)

V[j] = WV(X[j]) (1.22)

s[i, j] =
Q[i] ·K[j]√

dhid
(1.23)

α[i, :] = softmax(s[i, :]) (1.24)

=
exp s[i, :]∑

j∈[d]

exp s[i, j]
(1.25)

Y[i] =
∑
j∈[n]

α[i, j]V[j] (1.26)

with parameters

WQ,WK ∈ Rdhid×d

WV ∈ Rd×d

We call the Q[i] the queries, the K[j] the keys, the V[j] the values, the s[i, j] the
attention scores, and we call the α[i, j] the attention weights.

Real transformers use multi-head self-attention, which is the sum of H attentions,
att(X) =

∑H
i=1 att i(X). This can be emulated as the composition of H many single-

head attentions, each with different parameters, so we usually focus on single-head
attention. However, when discussing the depth of transformers, the parallel structure
of multi-head attention will become important.

Attention masking In future-masked (also known as causally-masked) self attention,
a term m(i, j) is added to Eq. (1.23) to force every position to attend only to preceding
positions:

m(i, j) =

{
0 if j ≤ i

−∞ otherwise.
(1.27)

(We define exp(−∞) = 0.) Some papers use strict future-masking, that is, m(i, j) = 0
iff j < i, and occasionally past-masking (j ≥ i) and strict past-masking (j > i).
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1.4.3 Feed-forward networks

Although feed-forward networks (FFNNs) come in many varieties, for our purposes
they always look like this:

Definition 1.30 (linear layer). A linear layer is a function

lin : Rd → Rd′

x 7→ Wx+ b (1.28)

with attributes

• d ∈ N, called the input size

• d′ ∈ N, called the output size

and parameters

• W ∈ Rd′×d, called the weights

• b ∈ Rd′
, called the bias.

Definition 1.31 (feed-forward neural network). A feed-forward neural network
(FFNN) is a function

ffn : Rdhid → Rdhid

x 7→ y where

h = ReLU(lin1(x))

y = lin2(h)

(1.29)

with attributes

• dFFN ∈ N, commonly set to 4dhid, but theoretical constructions use as many or
as few dimensions as needed.

• linear layers lin1 and lin2 such that

lin1.d = lin2.d
′ = dhid

lin1.d
′ = lin2.d = dFFN.

(Recall the dot notation introduced on page 3.)

The following expressivity results will come in handy. They are special cases
of a theorem that says that any continuous piecewise linear function on Rd can be
computed by a FFNN with O(log d) layers [Arora et al., 2018]. But we are restricting
FFNNs to have two layers.

Theorem 1.32. Any Boolean function can be computed by a FFNN.

Proof. Any Boolean function f can be converted to full disjunctive normal form
(DNF), in which at most one of the clauses can be true. Although it’s not necessarily
the most efficient, we can always do this by listing out all the inputs that make f true:

f(x0, . . . , xn−1) =
∨

ξ0,...,ξn−1∈{0,1}
f(ξ0,...,ξn−1)=1

(x0 ↔ ξ0 ∧ · · · ∧ xn−1 ↔ ξn−1).
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For example, the XOR function looks like

XOR(x, y) = (x↔ 0 ∧ y ↔ 1) ∨ (x↔ 1 ∧ y ↔ 0)

= (¬x ∧ y) ∨ (x ∧ ¬y).

Then we construct a 2-layer FFNN ffn with ReLU activations. It has 2n hidden
units:

hξ0,...,ξn−1
= ReLU

(∑
k

λξk,k − n+ 1

)
ξ0, . . . , ξn−1 ∈ {0, 1} (1.30)

λξ,k =

{
xk ξ = 1

1− xk ξ = 0
k ∈ [n] (1.31)

y =
∑

ξ0,...,ξn−1∈{0,1}
f(ξ0,...,ξn−1)=1

hξ0,...,ξn−1 . (1.32)

It’s because we know that at most one clause is true that we can compute the
disjunction using a simple addition (Eq. (1.32)).

Theorem 1.33. On scalar (that is, size 1) inputs, FFNNs compute exactly the set
of continuous piecewise linear functions with a finite number of pieces (or CPWL
functions for short).

Proof. Assume that f has the form:

f(x) =



m0x+ b0 x < a1

m1x+ b1 a1 ≤ x < a2
...

mk−1x+ bk−1 ak−1 ≤ x < ak

mkx+ bk ak ≤ x.

(1.33)

where mi−1ai + bi−1 = miai + bi for all i.
The first piece is made of a ReLU flipped left-to-right:

x

−a1

−1

f(a1)

−m0

a1

f(a1)

(1.34)

For each middle piece (i = 1, . . . , k − 1), we add in a “wedge” (also known as a
saturated linear unit) like this:

x

−ai

1

−ai+1

1

mi −mi

ai ai+1

0

f(ai+1)− f(ai)

(1.35)
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Finally, we add in one more ReLU for the last piece:

x

−ak

1

mk

ak

0

(1.36)

Theorem 1.34. For any d > 0 there is a FFNN that computes

if : R2d+1 → Rdct
f

 7→

{
t if c = 0

f if c = 1

provided 0 ≤ t[i] ≤ 1 and 0 ≤ f [i] ≤ 1 for all i.

Proof. The FFNN is [Pérez et al., 2021, Merrill and Sabharwal, 2024]:

c t f

−1 1

−1

1 1

1 1

1.4.4 Layer normalization

A d-dimensional layer normalization [Ba et al., 2016], or layernorm for short, is a
function

norm : Rd → Rd

x 7→ γ ⊙ x− x̄√
Var(x) + ε

+ β (1.37)

where ⊙ is component-wise multiplication,

x̄ =
1

d

∑
i∈[d]

xi (1.38)

Var(x) =
1

d

∑
i∈[d]

(xi − x̄)2 (1.39)
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and the parameters are

γ, β ∈ Rd

ε ≥ 0.

The original definition of layernorm [Ba et al., 2016] sets ε = 0, but, for numerical
stability, and to avoid division by zero, all implementations we are aware of set ε > 0.
Observe that norm is Lipschitz-continuous iff ε > 0.

Some transformer analyses omit layernorm for simplicity [e.g. Pérez et al., 2021].

1.4.5 Hidden layers

A transformer layer (also known as a block) comes in two variants. The post-norm
variant [Vaswani et al., 2017] is

layer : (Rd)∗
lp→ (Rd)∗

X 7→ Y where

H = norm1(X+ att(X))

Y = norm2(H+ ffn(H))

(1.40)

and the pre-norm variant [Wang et al., 2019] has

H = X+ att(norm1(X))

Y = H+ ffn(norm2(H))
(1.41)

where

• att is a self-attention with d input/output dimensions and dhid key/value dimen-
sions

• ffn is a feed-forward network with d input/output dimensions and two layers,
one ReLU and one linear.

• norm1 and norm2 are layernorms with d dimensions.

In both variants, the X+ and H+ terms are called residual connections [He et al.,
2015], also known as skip connections.

1.4.6 Transformer encoders

A post-norm transformer encoder is a length-preserving function

tfr : Σ∗ lp→ (Rd)∗

w 7→ A(L) where

A(0) = emb(w)

A(1) = layer1(A
(0))

...

A(L) = layerL(A
(L−1))

(1.42)

where
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• emb is an input layer

• L is called the depth

• each layer ℓ for ℓ ∈ 1, . . . , L is a post-norm transformer layer (1.40).

A pre-norm transformer encoder is additionally parameterized by the weights of a
final layernorm norm and is defined as:

tfr : Σ∗ lp→ (Rd)∗

w 7→ norm(A(L)) where

A(0) = emb(w)

A(1) = layer1(A
(0))

...

A(L) = layerL(A
(L−1))

(1.43)

where

• emb is an input layer

• L is called the depth

• each layer ℓ for ℓ ∈ 1, . . . , L is a pre-norm transformer layer (1.41)

• norm is a layernorm.

The encoder’s output is a sequence of vectors in (Rd)∗. To use it as a language
recognizer, we add a linear output layer

out : Rd → R
h 7→ Wh+ b i ∈ [n] (1.44)

with parameters W ∈ R1×d and b ∈ R. The encoder accepts iff out(tfr(w)[n]) ≥ 0.

1.4.7 Remarks

Encoders, decoders, and encoder–decoders. Besides transformer encoders,
there are other varieties. Transformer decoders, which will be introduced in Sec-
tion 3.1.2, generate strings instead of recognizing them. The original variety [Vaswani
et al., 2017] was a transformer encoder–decoder for machine translation: the encoder
reads in a source-language string and the decoder generates a target-language string.

Transformers and circuits. In Section 1.3 we mentioned that out of the various
formalisms we introduced, circuits have the most transparent connection with neural
networks. A neural network is essentially an arithmetic circuit with some fancy
operations (also known as a computation graph): a graph in which each node is an
operation Rk → R (addition, multiplication, division, ReLU, exp). The concept of the
depth of a neural network corresponds closely with the concept of depth of a circuit.
As transformers have bounded depth, we expect that their circuit-family counterparts
would also have bounded depth. The class NC0 is not interesting (exercise: why?)
but AC0 will be our first circuit complexity class of interest. Later, we will introduce
another circuit complexity class, TC0, which is even more relevant.
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Chapter 2

Encoders with Unique-Hard
Attention

In this chapter, we consider transformers (transformer encoders) that use unique-hard
attention (UHATs) instead of the standard softmax attention. Intuitively, unique-hard
attention always concentrates all attention on a single position. Although this is
simplistic compared to the way that transformers actually work, we will see that this
assumption makes it possible to exactly characterize what languages unique-hard
attention transformers can recognize, and to prove various facts about them; for
example, that it is always possible to increase their expressivity by increasing their
depth.

2.1 Unique-Hard Attention

For any vector x ∈ Rd, define M(x) = {i ∈ [n] | ∀j ∈ [n],x[j] ≤ x[i]} to be the set of
indices of the maximal elements of x. In leftmost-hard attention, the leftmost maximal
element is used, replacing Eq. (1.24) with:

α[i, j] = I[j = minM(s[i, :])] (2.1)

whereas in rightmost-hard attention, the rightmost maximal element is used:

α[i, j] = I[j = maxM(s[i, :])]. (2.2)

Leftmost-hard attention was previously called hard attention by Hahn [2020] and
unique-hard attention by Hao et al. [2022]. Here, we use the term unique-hard attention
to refer to either leftmost-hard or rightmost-hard attention.

2.2 Overview

Unique-hard attention has been studied in several papers:

• Hahn [2020] introduced UHATs and proved that they cannot recognize PARITY.

• Hao et al. [2022] generalized the above result by showing that UHATs only
recognize languages in AC0.

• Barceló et al. [2024] proved that UHATs can recognize all languages in FO.

18
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Here, we look at the results of Yang et al. [2023], which exactly characterize
transformers with rightmost-hard attention and strict future masking. We will call
these masked hard-attention transformers, or MUHATs for short.

Strict future masking means that each position i attends to positions j < i. If i is
the leftmost position, all positions are masked out, so (following Merrill and Sabharwal
[2024]) the attention output is just the zero vector.

2.3 Main Result

We’re going to prove the equivalence differently from Yang et al. [2023]:

strict-masked
UHATs

FO

LTL

Theorem 2.1

Theorem 1.21
[Kamp, 1968]

Theorem 2.5

Theorem 2.1. For any transformer encoder T with rightmost hard attention and
strict future masking, there is a closed formula of FO that defines the same language
that T recognizes.

The proof hinges on the fact that in a unique hard attention transformer, each
activation vector depends on at most two vectors from the layer below. Because the
network has fixed, finite depth, there is a fixed, finite number of possible activation
vectors that it can compute.

Lemma 2.2. Let T be a unique (leftmost or rightmost) hard attention transformer.
There is a finite set F ⊆ Rd such that for any input string w, all the activation vectors
computed by T (w) belong to F.

Proof. We prove that the self-attention at layer ℓ has at most (|Σ|+ 1)2
ℓ − 1 different

possible output vectors, by induction on ℓ.
Base case (ℓ = 0): Since there are no position embeddings, the embedding at

position i is determined entirely by wi, so there are at most |Σ| possible activation
vectors.

Inductive step (ℓ > 0): Assume that the output of the layer (ℓ− 1) has at most

(|Σ|+ 1)2
ℓ−1 − 1 possible activation vectors, and consider layer ℓ:

• The attention output at position i depends only on A(ℓ)[i] (because of the
residual connection) and A(ℓ)[ji] (where ji is the position that i attends to). So
the number of possible output activation vectors is at most(

(|Σ|+ 1)2
ℓ−1

− 1
)
(|Σ|+ 1)2

ℓ−1

≤
(
(|Σ|+ 1)2

ℓ−1

− 1
) (

(|Σ|+ 1)2
ℓ−1

+ 1
)

=
(
(|Σ|+ 1)2

ℓ−1
)2

− 1

= (|Σ|+ 1)2
ℓ

− 1.
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• Because the FFNN and layernorms operate position-wise, they also have at most

(|Σ|+ 1)2
ℓ − 1 possible activation vectors.

Therefore, the number of possible output vectors from a self-attention or FFNN at

layer ℓ is at most (|Σ|+ 1)2
ℓ − 1.

Then F is the union over all layers of the possible activation vectors.

Although it’s not the most efficient way to do it, we can represent each value
computed by the network as a set of |F| many formulas. (Yang et al. [2023] show how
to do this with only O(log |F|) many formulas.) Then any positionwise function can
be defined by writing a formula that is essentially a lookup table.

Definition 2.3. Let F be any finite set. A function X : Σ∗ lp→ F∗ is definable by
FO formulas (ϕX=v(i))v∈F if for all w ∈ Σ∗ and v ∈ F, we have X(w)[i] = v iff
w |= ϕX=v(i).

Lemma 2.4. Let F and F′ be any finite sets. If X : Σ∗ lp→ F∗ is definable by FO
formulas (ϕX=v(i))v∈F, and f : F → F′, then there are FO formulas (ϕf(X)=v(i)))v∈F
that define w 7→ f(X(w)), where f is applied positionwise.

Proof. For all v ∈ F′, define

ϕf(X)=v(i) =
∨
u∈F

f(u)=v

ϕX=u(i). (2.3)

Proof of Theorem 2.1. For every activation value A(ℓ)[i] (which depends on w and
can be thought of as a function of w), we will construct a formula actℓ,v(i) such that
w |= actℓ,v(i) iff A(ℓ)[i] = v. We do this by induction on ℓ.

Case ℓ = 0: At the bottom of the network, we have the embedding layer, A(0)[i] =
WE(w[i]). We define this in FO as

act0,v(i) =
∨
a∈Σ

WE(a)=v

Qa(i). (2.4)

Case ℓ > 0: Assume that there are formulas actℓ−1,v(i) that define the first ℓ layers,
ending in activations A(ℓ−1)[i] (Eq. (1.42) or Eq. (1.43)). Our goal is to write formulas
that define A(ℓ)[i]. We first need to translate the self-attention into FO, starting with
Eq. (1.23) with X = A(ℓ−1).

By Lemma 2.4, there are formulas queryℓ,v(i), keyℓ,v(i), and valueℓ,v(i) such that

w |= queryℓ,v(i) iff WQ(A(ℓ−1))[i] = v (2.5)

w |= keyℓ,v(i) iff WK(A(ℓ−1))[i] = v (2.6)

w |= valueℓ,v(i) iff WV(A(ℓ−1))[i] = v. (2.7)

By analogy with Lemma 2.4, there are formulas scoreℓ,v(i, j) that define s(ℓ)[i, j],
the attention score at layer ℓ from position i to position j:

scoreℓ,s(i, j) =
∨

u,v∈F
u·v=s

(
queryℓ,u(i) ∧ keyℓ,v(j)

)
(2.8)
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where s ranges over possible scores (a finite set). Furthermore, there is a formula
compareℓ(i, j1, j2) that holds iff s(ℓ)[i, j1] ≤ s(ℓ)[i, j2]:

compareℓ(i, j1, j2) =
∨
s1,s2
s1≤s2

(scoreℓ,s1(i, j1) ∧ scoreℓ,s2(i, j2)). (2.9)

Then we can define a formula that tests whether position i attends to position j
(that is, weightℓ(i, j) holds iff α[i, j] at layer ℓ).

weightℓ(i, j) = j < i

∧ ∀k[k < j → compareℓ(i, k, j)]

∧ ∀k[j < k ∧ k < i→ ¬compareℓ(i, j, k)].

(2.10)

Because j is the rightmost position with maximal score, the positions left of j must
have score less than or equal to s[i, j], but the positions between j and i (exclusive)
must have score strictly less than s[i, j]. For example:

j i

s[
i,
−
]

Next we can write formulas that define the attention output at position i (which is
Y[i] in Eq. (1.26)), taking care to deal with the edge case i = 0:

attℓ,v(i) =

{
∃j[weightℓ(i, j) ∧ valueℓ,v(j)] v ̸= 0

∃j[weightℓ(i, j) ∧ valueℓ,v(j)] ∨ ¬∃j[j < i] v = 0.
(2.11)

By Lemma 2.4 again, there are formulas actℓ,v(i) that encode the residual connec-
tions and the FFNN (Eq. (1.40) or Eq. (1.41)), defining A(ℓ)[i]. This completes the
induction.

At the top of the network, we use Lemma 2.4 one last time to write formulas
outv(i) that define the output layer, and finally we write a formula that tests the
output at the last position:

ϕ = ∃n.(∀i.i ≤ n) ∧
∨
v≥0

outv(n).

To go in the other direction, we use the fact that LTL is equivalent to FO [Kamp,
1968] and do an easier conversion from LTL.

Theorem 2.5. For any formula ϕ of LTL, there is a transformer encoder with
rightmost hard attention and strict future masking that recognizes the same language
that ϕ defines.

The proof will be by induction on the structure of ϕ, so we need the following
lemma for combining the translations of sister subformulas.
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Lemma 2.6 (Parallel composition). Given transformer encoders without layer nor-
malization

tfr1 : Σ
∗ lp→ (Rd1)∗

tfr2 : Σ
∗ lp→ (Rd2)∗

there is a transformer

tfr1 ⊕ tfr2 : Σ
∗ lp→ (Rd1+d2)∗

such that for all strings w = w0 · · ·wn−1 ∈ Σ∗,

(tfr1 ⊕ tfr2)(w) =

[
tfr1(w)[0]
tfr2(w)[0]

]
· · ·
[
tfr1(w)[n− 1]
tfr2(w)[n− 1]

]
. (2.12)

Proof. Let d1 and d2 be the width of tfr1 and tfr2, and let d = d1 + d2. If one of tfr1
and tfr2 has fewer layers than the other, add trivial layers (layers that compute the
identity function) until they have the same number of layers L.

The new transformer has embedding layer

(tfr1 ⊕ tfr2).emb(w) =

[
tfr1.emb(w)[0]
tfr2.emb(w)[0]

]
· · ·
[
tfr1.emb(w)[n− 1]
tfr2.emb(w)[n− 1]

]
.

For each layer ℓ ∈ [L], let f1 = tfr1.layer ℓ and f2 = tfr2.layer ℓ. Widen f1 into a
layer f ′1 with width d as follows.

f ′1.W
Q =

[
f1.W

Q 0
]

f ′1.W
K =

[
f1.W

K 0
]

f ′1.W
V =

[
f1.W

V 0
0 0

]
f ′1.lin1.W =

[
f1.lin1.W 0

0 0

]
f ′1.lin1.b =

[
f1.lin1.b

0

]
f ′1.lin2.W =

[
f1.lin2.W 0

0 0

]
f ′1.lin2.b =

[
f1.lin2.b

0

]
Similarly, widen f2 into a layer f ′2 with width d, but using the bottom half of the
activation vectors:

f ′2.W
Q =

[
0 f2.W

Q
]

f ′2.W
K =

[
0 f2.W

K
]

f ′2.W
V =

[
0 0
0 f2.W

V

]
f ′2.lin1.W =

[
0 0
0 f2.lin1.W

]
f ′2.lin1.b =

[
0

f2.lin1.b

]
f ′2.lin2.W =

[
0 0
0 f2.lin2.W

]
f ′2.lin2.b =

[
0

f2.lin2.b

]
Then stack f ′1 on top of f ′2, or the other way around. (If we had multi-head attention,
we could have combined f1 and f2 into a single layer.)

Proof of Theorem 2.5. For any LTL formula ϕ, there is a transformer tfrϕ and an index
k such that tfrϕ(w)[i, k] = I[w, i |= ϕ]. We show this by induction on the structure
of ϕ.
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Base case ϕ = Qa for some a ∈ Σ: Then tfrϕ is just an embedding function

tfrϕ(w)[i] =
[
I[wi = a]

]
. (2.13)

Case ϕ = ¬ϕ1: By the induction hypothesis, there is a transformer tfr1 simulating
ϕ1. For simplicity, we write the output activation vector of tfrϕ1

as

tfrϕ1
(w)[i] =

[
I[w, i |= ϕ1]

0

]
(2.14)

even though tfrϕ1
(w)[i] presumably has other components not shown. We add a trivial

self-attention layer and, by Theorem 1.32, a FFNN to simulate ϕ = ¬ϕ1:

ffn¬(tfrϕ1
(w))[i] =

[
0

I[w, i |= ¬ϕ1]

]
. (2.15)

Case ϕ = ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2: By the induction hypothesis, there are transformers
tfr1 and tfr2 simulating ϕ1 and ϕ2, respectively. Combine these using Lemma 2.6, add
a trivial self-attention layer and, by Theorem 1.32, a FFNN to simulate ϕ.

Case ϕ = ϕ1 since ϕ2: By the induction hypothesis, there are transformers tfr1
and tfr2 simulating ϕ1 and ϕ2, respectively. Combine these using Lemma 2.6. For
simplicity, we write the output activation vectors of the composed transformer as:

A[i] =


I[w, i |= ϕ1]
I[w, i |= ϕ2]

0
0

 . (2.16)

Imagine, given position i, how you would decide whether ϕ1 since ϕ2 is true. You
could look at positions i− 1, i− 2, and so on. If ϕ1 is true and ϕ2 is false, then keep
looking to the left. But when you encounter one of these situations, you know whether
ϕ1 since ϕ2 is true (here, black means true, blank means false, and gray means either):

Case 1 Case 2 Case 3

j i

ϕ2

ϕ1

j i

ϕ2

ϕ1

i

ϕ2

ϕ1

w, i |= ϕ1 since ϕ2 w, i ̸|= ϕ1 since ϕ2 w, i ̸|= ϕ1 since ϕ2

In case 1, the rightmost j satisfying ϕ2 will occur at or beyond the rightmost j
satisfying ¬ϕ1, so w, i |= ϕ1 since ϕ2. In case 2, the rightmost j satisfying ϕ2 occurs
before the rightmost j satisfying ¬ϕ1, so w, i ̸|= ϕ1 since ϕ2. In case 3, there is no j
satisfying ϕ2, so w, i ̸|= ϕ1 since ϕ2.

So the idea is to attend to the rightmost position such that ϕ1 is false or ϕ2 is true.
Then return whether at that position ϕ2 is true or not. If there is no such position,
return false.

Add (a trivial self-attention layer and) a FFNN (using Theorem 1.32) to compute

A′[i] =


I[w, i |= ϕ1]
I[w, i |= ϕ2]

¬I[w, i |= ϕ1] ∨ I[w, i |= ϕ2]
0

 . (2.17)
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Then add a self-attention layer:

Q[i] =
[
1
]

K[j] =
[
I[¬(w, j |= ϕ1) ∨ (w, j |= ϕ2)]

]
(2.18)

V[j] =


0
0
0

w, j |= ϕ2

 . (2.19)

For any position i, the position ji that receives attention is the rightmost one left of i
that either satisfies ϕ2 (in which case ϕ1 must be satisfied from ji to i exclusive) or
does not satisfy ϕ1 (in which case ϕ2 must not be satisfied from ji to i exclusive).

Then i satisfies (ϕ1 since ϕ2) if and only if ji satisfies ϕ2. So the value tests for
whether ϕ2 is satisfied.

There are two edge cases to consider. First, if there are no positions such that ϕ1
is false or ϕ2 is true, then all positions maximize the score. The winner is position
(i− 1), and at that position, ϕ2 is false, so the attention outputs false, which is correct.
Second, at the very leftmost position (i = 0), there are no unmasked positions, so the
attention outputs the zero vector (= false), which is correct.

Since this construction uses only position-independent queries (0 or 1), a perhaps
surprising consequence is that every transformer encoder with rightmost hard attention
and strict future masking is equivalent to one that uses only position-independent
queries.

2.4 Additional Results

The close correspondence between masked hard-attention transformers and LTL not
only provides a characterization of the expressive power of (strictly masked unique
hard-attention) transformers, but also gives fine-grained insights into what factors
contribute to their expressive power. By direct application of known results about
LTL, we can better understand the role played by strict masking, positional encodings,
and depth.

2.4.1 Stutter-Invariance

The choice of strict masking deviates from standard practice, and may appear to be
a deficiency, but in the setting of masked hard-attention transformers, it actually
contributes to expressive power. Non-strictness is known to reduce expressivity in
LTL [Peled and Wilke, 1997], and we can then show that it reduces expressivity in
masked hard-attention transformers as well. Intuitively, non-strict masked operations
are unable to distinguish between consecutive positions that have the same symbol.
More formally, a language over Σ is called stutter-invariant iff for all u, v ∈ Σ∗ and
a ∈ Σ, uav ∈ L iff uaav ∈ L. An example of a language that is star-free but not
stutter-invariant is {a}.

Theorem 2.7. Masked hard-attention transformers with only non-strict masking
recognize exactly the stutter-invariant star-free languages.

Proof. Peled and Wilke [1997] prove that LTL with non-strict operators recognizes
exactly the stutter-invariant star-free languages. Non-strict since is defined as follows:

w, i |= ϕ1 since ϕ2 if there is a j ≤ i such that w, j |= ϕ2, and

for all k such that j < k ≤ i, we have w, k |= ϕ1
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The proofs of Theorems 2.1 and 2.5 may be adapted to use non-strict temporal operators
and non-strict masking. Thus, non-strict masked hard-attention transformers and
non-strict LTL are equivalent, and the result follows.

2.4.2 Regular Languages in AC0

So far we have only considered masked hard-attention transformers without position
embeddings, but the proofs Theorems 2.1 and 2.5 go through for transformers extended
with position embeddings with finite image (the set

⋃
n{PEn(i) | i ∈ [n]} is finite) and

FO or LTL extended with additional monadic numerical predicates (predicates with
one argument that depend only on n, not w). Here, we consider the case of sinusoidal
position embeddings, which are similar to the original position embedding [Vaswani
et al., 2017].

For any even d, let us define a rational sinusoidal positional embedding with d
dimensions to be a position embedding

PEn(i) =


sin(2πf0i)
cos(2πf0i)

· · ·
sin(2πfd/2−1i)
cos(2πfd/2−1i)

 f0, . . . , fd/2−1 ∈ Q.

Admittedly, in the original definition, the fk were not rational.

Corollary 2.8. Masked hard-attention transformers with rational sinusoidal position
embeddings recognize exactly the regular languages in AC0 (that is, regular languages
definable by a family of Boolean circuits with polynomial size and constant depth).

Proof. Let MOD be the collection of predicates MODr
m(i) for all 0 ≤ r < m, which hold

just in case i ≡ r (mod m). The regular languages in AC0 are exactly the languages
definable in FO[MOD] or first-order logic with modular predicates [Barrington et al.,
1992].

(Masked hard-attention transformers to FO[MOD]) Let PEn be a sinusoidal posi-
tional embedding. Since the f ’s are rational, PEn has finite image and is also periodic
(that is, there is an integer m such that for all i, i and i+m have the same embedding).
So we can adapt the proof Theorem 2.1, which expresses a masked hard-attention
transformer in FO, modifying Eq. (2.4) to

act0,v(i) =
∨
a∈Σ
r∈[m]

WE(a)+PE(r)=v

(Qa(i) ∧MODr
m(i)) . (2.20)

Thus, transformers with positional embedding PEn are contained in FO[<,MOD],
which are the regular languages in AC0.

(FO[MOD] to LTL[MOD]) By LTL[MOD], we mean LTL extended with MOD
predicates as defined above. The proof of Kamp’s theorem (Theorem 1.21) works with
these (or any) additional predicates.

(LTL[MOD] to masked hard-attention transformers) We can use a 2-layer ReLU
network to compute MODr

m [Chiang et al., 2023, Lemma 20]:

h(i) = ReLU (sin 2πr/m sin 2πi/m+ cos 2πr/m cos 2πi/m− cos 2π/m)

= ReLU(cos(2π(i− r)/m))

MODr
m(i) = (1− cos 2π/m)h(i).
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Thus LTL[MOD] is contained in the languages recognized by masked hard-attention
transformers with rational sinusoidal position embeddings.

Thus, this class of transformers defines exactly the class of regular languages in
AC0.

2.4.3 Depth

There is a close relationship between since operators and self-attention layers. In fact,
the since-nesting depth of a formula corresponds to the number of attention layers in
the corresponding transformer, assuming we use multi-headed attention layers. We’ve
already defined the depth of a masked hard-attention transformer to be the number of
attention layers it has (L).

The temporal depth of an LTL formula is defined inductively as follows:

dp(Qa) = 0 dp(ϕ ∧ ψ) = max(dp(ϕ),dp(ψ))

dp(¬ϕ) = dp(ϕ) dp(ϕ since ψ) = max(dp(ϕ),dp(ψ)) + 1.

Let MUHAT(▶F )k be the languages recognizable by multi-head transformers of
depth k using only future-masked rightmost-hard attention. Let LTLk be the languages
definable by LTL formulas of depth k.

The proof of Theorem 2.5 can be refined to show that an LTL formula of depth k
can be simulated by a transformer of depth k. This requires the use of multi-head
attention in order to perform more attention operations in parallel.

Theorem 2.9. For all k ≥ 0, LTLk ⊆ MUHAT(▶F )k.

Proof. We will show that every formula up to depth k can be simulated by a transformer
of depth k, by induction on k.

If ϕ is depth 0, it is a Boolean combination of the Qa predicates. So it can be
computed entirely in the word embeddings (cf. Eq. (2.13)):

tfrϕ(w)[i] =
[
I[w, i |= ϕ]

]
. (2.21)

For the inductive step, first note that ϕ is a Boolean combination of formulas
ϕ0, . . . , ϕm−1 where each ϕi has depth at most (k+1) and is of the form ϕi = ϕi1 since
ϕi2, so ϕi1 and ϕi2 have depth at most k. By the induction hypothesis, there are
transformers simulating the ϕi1 and ϕi2, and we can use the parallel composition
lemma (Lemma 2.6) to combine them. We then add a multi-head self-attention layer
to simulate each since operator in parallel, and then a feed-forward layer to simulate
the Boolean combination. Thus, we can simulate ϕ with a transformer of depth k.

Here, we simulated a masked hard-attention transformer in LTL indirectly, via
simulation in FO and Kamp’s theorem. However, we can also perform the simulation
directly [Yang et al., 2023, Theorem 4], making it possible to relate the depth of the
masked hard-attention transformer with the resulting LTL formula:

Corollary 2.10. For all k ≥ 0, MUHAT(▶F )k ⊆ LTL2k.

Now that we’ve related the depth of masked hard-attention transformers with the
depth of LTL formulas, we can apply known results about the LTL depth hierarchy in
the setting of transformers. Let Σ = {a, b, c}; then STAIRk is the set of strings which,
after deleting c’s, contain ak as a substring. For example, abaca is in STAIR2 but
not STAIR3. It was shown by Etessami and Wilke [2000] that the STAIR language
separates the levels of the LTL depth hierarchy:

Expressivity of Transformers Version of August 2, 2024



Chapter 2. Encoders with Unique-Hard Attention 27

Theorem 2.11. For all k ≥ 0, STAIRk+1 ∈ LTLk+1 \ LTLk. Thus, LTLk ⊊ LTLk+1.

Using this, we can show the following:

Theorem 2.12. For all k ≥ 0, MUHAT(▶F )k ⊊ MUHAT(▶F )2k+1. Thus, the depth
hierarchy for masked hard-attention transformers is strict.

Proof. By composing several results from above:

MUHAT(▶F )k ⊆ LTL2k ⊊ LTL2k+1 ⊆ MUHAT(▶F )2k+1.

So in contrast to feedforward neural networks, where two layers is enough to
approximate any function, with masked hard-attention transformers, it’s always
possible to increase expressivity by adding more layers.
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Chapter 3

Decoders with Intermediate
Steps

Today, we are going to look at one of the two earliest results mentioned in Chapter 1:

For any Turing machine M , there is a transformer decoder with average-
hard attention and intermediate steps that simulates M .

We start by defining some key terms.

3.1 Definitions

3.1.1 Average-hard attention

As is common, this proof simplifies attention by making it focus attention only on the
positions with the maximum score (s). If there is more than one maximal position,
attention is distributed evenly among them.

For any vector x ∈ Rd, define M(x) = {i ∈ [n] | ∀j ∈ [n],x[j] ≤ x[i]} to be the
set of indices of the maximal elements of x. In average-hard attention, Eq. (1.24) is
replaced with:

α[i, j] =
I[j ∈M(s[i, :])]

|M(s[i, :])|
. (3.1)

Average-hard attention was also called hard attention by Pérez et al. [2021] and
saturated attention by Merrill et al. [2022], and has been argued to be a realistic
approximation to how trained transformers behave in practice [Merrill et al., 2021].

3.1.2 Transformer decoders

A transformer decoder is a transformer encoder tfr with future masking in its attention,
typically used to generate rather than recognize strings. GPT and its competitor
LLMs are all transformer decoders.

We assume that Σ contains a special symbol BOS that does not occur anywhere
else; later, we will add several other special symbols. The input string is the prefix of
previously-generated symbols, y<t = y0 · · · yt−1, where y0 = BOS. The output is a
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decoder

BOS

y1

y1

y2

y2

y3

· · ·

· · ·

yt−1

yt

(a) without prompt

decoder

x1 x2 · · · xm BOS

y1

y1

y2

y2

y3

· · ·

· · ·

yt−1

yt

(b) with prompt

Figure 3.1: Generating strings from a transformer decoder.

probability distribution p̂(yt | y<t) over the next symbol,

out : Rd → R
x 7→ Wx+ b (3.2)

p̂(· | y<t) = softmax(out(tfr(y<t)[t− 1])) (3.3)

where parameters W ∈ R|Σ|×d and b ∈ R|Σ|.
To sample a string, we first sample y1 from p̂(y1 | BOS), then, for each time step

t > 1, sample yt from p̂(yt | y<t). The process stops when yt = EOS. Because each
sampled output symbol becomes part of the input at the next time step, this kind of
model is called autoregressive. See Fig. 3.1a.

In most (not all) theoretical papers about transformer decoders, we want the
decoder to output a single next symbol instead of a probability distribution over next
symbols. To do this, we can select the argmax of out(tfr(y<t)[t−1]) instead. Warning:
In general, selecting the argmax at each step does not give you the highest-probability
string.

We can also provide a prompt x to the decoder, which the decoder can see as part
of its input but doesn’t have to output. In that case, for t ≥ 1, the input string is
x · y<t, and the output is yt. See Fig. 3.1b.

3.1.3 Intermediate steps

In many applications of transformer decoders, the prompt x is some kind of question,
and the desired output y is the answer. For example, x = 101*101 and y = 10201.
Researchers have found in practice that sometimes a transformer decoder isn’t very
good at answering certain kinds of questions, but if one allows the decoder to insert
a number of intermediate time steps between the prompt and the final output, it
sometimes performs much better. This is known as a scratchpad [Nye et al., 2022] or
chain of thought [Wei et al., 2022]. Here, we’re only interested in the case where the
final output is a single symbol, so we have the following definition.

Definition 3.1. Let f be a transformer decoder. For any string x ∈ Σ∗, we say that f ,
on prompt x, outputs yT after T intermediate steps if there is a string y = y1 · · · yT
such that for all t = 1, . . . , T , the output distribution f(x · y<t) is maximized by yt.
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3.1.4 Turing machines

We assume that you are familiar with Turing machines. We use the definition of
Turing machine in the textbook by Sipser [2013], with one small modification. Just to
make sure we’re on the same page, we give the barest of definitions here.

Definition 3.2. A Turing machine is a tuple M = (Q,Σ,Γ, δ, qstart, qaccept, qreject),
where

• Q is a finite set of states

• Σ is a finite input alphabet, where ̸∈ Σ

• Γ is a finite tape alphabet, where Σ ∪ { } ⊆ Γ

• δ : Q× Γ → Q× Γ× {−1,+1} is the transition function.

The tape has a left end and extends infinitely to the right. On input w ∈ Σ∗, the
tape is initialized to w · · · . If the current state is q, the current tape symbol is a,
and δ(q, a) = (r, b,m), then the machine enters state r, writes a b, and moves left if
m = −1, right if m = +1. If the machine enters state qaccept, it halts and accepts w;
if it enters state qreject, it halts and rejects w.

Example 3.3. Here’s an example Turing machine [Sipser, 2013], with qstart = q1,
qaccept = q6 (marked with a double circle), qreject = q7. It decides the language
{12m | m ≥ 0}.

q1 q2 q3 q4

q5

q6q7 q7

1 → ,+1

x → x,+1
→ ,+1

x → x,+1

1 → x,+1

→ ,+1

x → x,+1

1 → 1,+1

→
,−

1

x → x,+1

1 → x,+1

→ ,+1

1 → 1,−1
x → x,−1

→
,+

1

The reject state q7 appears twice to reduce clutter.
The (not very exciting) run of this machine on string 11 is:

q1 1
ˆ
1 · · ·

q2 1
ˆ

· · ·
q3 x

ˆ
· · ·

q5 x
ˆ

· · ·
q5

ˆ
x · · ·

q2 x
ˆ

· · ·
q6 accept

3.2 Transformers Simulating Turing Machines

Theorem 3.4. For any Turing machine M with input alphabet Σ, there is a trans-
former decoder f with average-hard attention that is equivalent to M in the following
sense. For any string w ∈ Σ∗:
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• If M halts and accepts on input w, then there is a T such that f , on prompt w,
outputs ACC after T intermediate steps.

• If M halts and rejects on input w, then there is a T such that f , on prompt w,
outputs REJ after T intermediate steps.

• If M does not halt on input w, then there does not exist a T such that f , on
prompt w, outputs either ACC or REJ.

The rest of this chapter proves the above theorem. There are several related proofs
in the literature [Pérez et al., 2021, Bhattamishra et al., 2020b, Merrill and Sabharwal,
2024]; ours is an amalgam of these.

The key idea in most of these proofs is that a transformer has no memory to store
the contents of the tape. All it has is the intermediate steps, which it uses to record
changes to the contents of the tape. Whenever it needs to read a cell of the tape, it
must use the record of changes to reconstruct the contents of the cell.

Let M = (Q,Σ,Γ, δ, qstart, qaccept, qreject). The alphabet of f.tfr is

Σ′ = Σ ∪ {BOS,ACC,REJ} ∪ (Q× Γ× {−1,+1}).

At each time step starting with BOS, the network outputs a triple (r, b,m) ∈ (Q ×
Γ× {−1,+1}) indicating what the next simulated action of M is.

Each time step i = 0, 1, . . . of the transformer proceeds as follows.

1. Unpack the current input symbol, x(i):

• If x(i) ∈ Σ ∪ BOS, let q(i) = ⊥ and m(i−1) = 0.

• Else, let (q(i), b(i−1),m(i−1)) = x(i).

2. Compute the head position: h(i) =
∑i

j=0m
(j−1).

3. Compute the symbol under the head, a(i):

• Find j∗, the rightmost position j < i such that h(j) = h(i).

• If j∗ exists and b(j) ̸= ⊥, let a(i) = b(j
∗).

• Else, if x(h
(i)) ∈ Σ, let a(i) = x(h

(i)).

• Else, let a(i) = .

4. Compute the next transition:

• If x(i) ∈ Σ, just output y(i) = x(i). (It will be ignored anyway.)

• Else, if x(i) = BOS, let q(i+1) = qstart, b
(i) = a(i), and m(i) = 0.

• Else, let (q(i+1), b(i),m(i)) = δ(q(i), a(i)).

• If q(i+1) = qaccept or qreject, output y
(i) = ACC or y(i) = REJ, respectively.

• Else, output y(i) = (q(i+1), b(i),m(i)).
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For example, the run from Example 3.3 is simulated by:

i tape x(i) q(i) b(i−1) m(i−1) h(i) a(i) y(i)

0 1 ⊥ ⊥ 0 0 1 1

1 1 ⊥ ⊥ 0 0 1 1

2 BOS ⊥ ⊥ 0 0 1 (q1, 1, 0)
3 1

ˆ
1 · · · (q1, 1, 0) q1 1 0 0 1 (q2, ,+1)

4 1
ˆ

· · · (q2, ,+1) q2 +1 1 1 (q3, x,+1)

5 x
ˆ
· · · (q3, x,+1) q3 x +1 2 (q5, ,−1)

6 x
ˆ

· · · (q5, ,−1) q5 −1 1 x (q5, x,−1)

7
ˆ
x · · · (q5, x,−1) q5 x −1 0 (q2, ,+1)

8 x
ˆ

· · · (q2, ,+1) q2 +1 1 x ACC

Now we have to construct transformer layers to perform the above steps. Each
input vector contains a word embedding, e(x(i)), and a position embedding with 4
components:

A(0)[i] =


e(x(i))

1/(i+ 1)
1
i
i2

 . (3.4)

Step 1 is piecewise linear, so it can be computed by a FFNN (Theorem 1.33).
Afterwards, the activation vector at position i is:

A(1)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)


. (3.5)

Step 2 can be computed by a uniform self-attention layer:

Q[i] = 0 K[j] = 0 V[j] =

[
0

m(i−1)

]
. (3.6)

Uniform self-attention computes an average, not a sum. Since at time step i, there
are i+ 1 positions to average over, the result is h(i)/(i+ 1), not h(i). We’ll correct
this in the next step.

A(2)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)

h(i)/(i+ 1)


(3.7)
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Step 3 is the most difficult step. There are several schemes that have been proposed
for this. All of them use average-hard attention, and all of them further modify the
transformer in some way: changing dot-product to something else [Pérez et al., 2021],
adding components to the position embedding [Pérez et al., 2021, Barceló et al., 2024,
Strobl et al., 2024a], or applying layer normalization only to selected components
[Merrill and Sabharwal, 2024]. The construction here is closest to that of Strobl et al.
[2024a].

It uses two self-attention layers. The first layer changes h(i)/(i + 1) to h(i) by
treating the position embeddings as a lookup table [Barceló et al., 2024].

Q[i] =

[
2h(i)/(i+ 1)
−1/(i+ 1)

]
K[j] =

[
j
j2

]
V[j] =


0
j
j2

e(x(j))

 (3.8)

Q[i] ·K[j] =
1

i+ 1
j(2h(i) − j). (3.9)

Then the attention scores are uniquely maximized when j = h(i):

0 h(i) 2h(i)

0

(h(i))2/(i+ 1)

j

Q
[i
]
·K

[j
]

So the attention layer outputs h(i), and also some other quantities which we’ll need
shortly. The activation vector at position i is:

A(3.5)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)

h(i)/(i+ 1)
h(i)

(h(i))2

e(x(h
(i)))



. (3.10)

Recall that we need to search positions j < i such that h(j) = h(i). But future-
masked attention looks at positions j ≤ i. To get around this, we search positions
j ≤ i such that h(j−1) = h(i). So we will need

h(i−1) = h(i) −m(i−1) (3.11)

(h(i−1))2 = (h(i))2 − 2h(i)m(i−1) + (m(i−1))2 (3.12)

=

{
(h(i))2 + 2h(i) + 1 if m(i−1) = −1

(h(i))2 − 2h(i) + 1 if m(i−1) = +1
(3.13)
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which can both be computed using a FFN. So

A(4)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)

h(i)/(i+ 1)
h(i)

(h(i))2

e(x(h
(i)))

h(i−1)

(h(i−1))2



. (3.14)

The second self-attention layer uses another variation of the lookup trick:

Q[i] =

 2h(i)

−1
1

2(i+1)

 K[j] =

 h(j−1)

(h(j−1))2

j

 V[j] =

 0
h(j−1)

e(b(j−1))

 (3.15)

Q[i] ·K[j] = h(j−1)(2h(i) − h(j−1))︸ ︷︷ ︸
find h(j−1) = h(i)

+
j

2(i+ 1)︸ ︷︷ ︸
find rightmost

(3.16)

The first term is maximized when h(j−1) = h(i), in which case it attains its
maximum of (h(i))2.

If there is more than one such position j, then because of the second term, j∗ is
the rightmost such j. This second term has to be increasing in j, but it also has to be
small enough that it cannot make the second-highest score as big as the highest score.
Since h(j−1) is an integer, the difference between the first- and second-best values of
the first term is 1:

0 h(i) − 1 h(i)

(h(i))2 − 1

(h(i))2

h(j−1)

fi
rs
t
te
rm

So we make the second term j
2(i+1) ≤

1
2 < 1.
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This gives

H(4)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)

h(i)/(i+ 1)
h(i)

(h(i))2

e(x(h
(i)))

h(i−1)

(h(i−1))2

h(j
∗−1)

e(b(j
∗−1))



. (3.17)

Finally, we can use the FFNN to set

a(i) =

{
b(j

∗−1) h(j
∗−1) = h(i) and b(j

∗−1) ̸= ⊥
x(h

(i)) otherwise.
(3.18)

So the activation vectors are:

A(5)[i] =



e(x(i))
1/(i+ 1)

1
i
i2

e(q(i))
e(b(i−1))
m(i−1)

h(i)/(i+ 1)
h(i)

(h(i))2

e(x(h
(i)))

h(i−1)

(h(i−1))2

h(j
∗−1)

e(b(j
∗−1))

e(a(i))



. (3.19)

Step 4 is piecewise linear, so it can be computed by a FFNN (Theorem 1.33).

3.3 Open Questions

We don’t know whether a similar construction exists for softmax-attention transformers.
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Chapter 4

Encoders with Soft Attention

Today, we consider transformers that use softmax attention (as they do in practice).
This seems to be the most difficult case to pin down. There are a number of upper
bounds (transformers only recognize languages in some complexity class) and lower
bounds (transformers can recognize any language in some complexity class), but no
exact characterizations yet.

Here, we will look at one upper bound and one lower bound. Both of them are
based on logics we’ve seen already, but extend them to allow counting and arithmetic.

4.1 Upper Bound

Upper bounds seem to require assuming some limitation on attention or numeric
precision, or both. Strobl [2023] showed that average-hard attention transformers
(AHATs, which we will encounter later) with O(log n)-bit floating-point numbers only
recognize languages in L (log-space) uniform TC0. Here, we’ll present the result of
Merrill and Sabharwal [2023a] that SMATs with O(log n)-bit floating-point numbers
can only recognize languages in DLOGTIME-uniform TC0, which is equivalent to
first-order logic with counting quantifiers, addition, and multiplication.

4.1.1 Arithmetic predicates

We can increase the expressivity of FO by adding more predicates besides <. The
logic FO[+,×] extends FO with predicates

w, I |= ADD(x, y, z) if I(x) + I(y) = I(z)

w, I |= MUL(x, y, z) if I(x)I(y) = I(z)

For readability, we usually write x+ y = z in place of ADD(x, y, z), and similarly for
other arithmetic operations. You could think of x+ y as an term that is interpreted
as a natural number, but note that ∃z.x + y = z may be false because z must be
interpreted in [n].

Exercise 4.1. Write formulas

1. SUB(x, y, z) such that

w, I |= SUB(x, y, z) if I(x)− I(y) = I(z)

36
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2. DIV(x, y, q, r) such that

w, I |= DIV(x, y, q, r) if I(x) = I(y)I(q) + I(r)

Theorem 4.2. The following formulas are definable in FO[BIT]:

(a) POW(x, y, z) iff z = xy

(b) BIT(x, y, z) iff the y-th bit in the binary representation of x is z [Immerman,
1999, Theorem 1.17.2]

It is also possible (and in fact more common) to make BIT the built-in predicate,
and to define in FO[BIT] predicates ADD and MUL.

Example 4.3. The following formula of FO[+,×] tests whether a number is odd:

ODD(x) = ¬(∃y.ADD(y, y, x)) = ¬(∃y.y + y = x). (4.1)

Previously we were unable to state a nice correspondence between FO and AC0,
but now we can:

Theorem 4.4 (Barrington et al., 1990). FO[+,×] defines exactly the languages in
DLOGTIME-uniform AC0.

4.1.2 Uniform TC0

We previously saw ACk and NCk (Definition 1.26); now we introduce TCk, which has
long been studied in connection with neural networks.

Definition 4.5. TCk is the class of languages that can be recognized by families
of circuits with unbounded fan-in, O(poly(n)) size, and O((log n)k) depth, and have
MAJORITY gates, which output 1 iff at least half of their inputs are 1.

DLOGTIME-uniform TC0 contains a lot of languages, but there are also a number of
NC1-complete languages that, under the widely-believed assumption that TC0 ̸= NC1,
do not belong to TC0. Consequently, we don’t think that transformers can recognize
them either.

• One example of an NC1-complete language is the Boolean Formula Value Problem
(BFVP). The instances are propositional formulas built up from constants 0
and 1 and the connectives ∧, ∨, ¬, and the problem is to decide whether such a
formula is true or not. In other words, it is defined by the following context-free
grammar:

S → F1

F1 → (F1 ∧ F1)

| (F0 ∨ F1) | (F1 ∨ F0) | (F1 ∨ F1)

| (¬F0)

| 1
F0 → (F0 ∧ F0) | (F0 ∧ F1) | (F1 ∧ F0)

| (F1 ∨ F1)

| (¬F1)

| 0
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Linguistically, the ability to evaluate Boolean formulas is directly relevant to
computations underlying compositional semantics. Indeed, Boole’s original
motivation was to assert that such descriptions codify a language of thought.
Modern semantic theory, influenced more by the Lambda calculus thanks to
work by Montague, Partee, and others, is a direct consequence. The relationship
between neural networks and compositional behavior is a fraught one, and the
subject of decades of debate from figures like Fodor, Pylyshyn, Smolensky, and
others.

• The canonical example of a regular but NC1-complete language is the word
problem for S5. A permutation of [k] is a bijection π : [k] → [k], and Sk is the
set of all permutations of [k]. Treating Sk as an alphabet and compositions of
permutations as strings, we can define the language W(Sk) of compositions of
permutations of [k] that equal the identity permutation. For example, in S3,
the permutation (120) maps 0 7→ 1, 1 7→ 2, and 2 7→ 0, so that W(S3) contains
(120) ◦ (120) ◦ (120) but not (120) ◦ (120). These languages are easy for finite
automata to recognize, but difficult with only fixed computation depth.

The languages W(Sk) have some relevance to natural language: they resemble
expressions like the child of the enemy of Ann where the interpretation of the
child of is (roughly) a permutation of possible referents [Paperno, 2022], and
problems that have been used to benchmark transformers’ state-tracking abilities
[Kim and Schuster, 2023].

4.1.3 Counting quantifiers

FOC is first order logic with counting terms [van Benthem and Icard, 2023].

Example 4.6. The majority language,

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}. (4.2)

can be defined by the FOC formula

(#z.Q0(z))︸ ︷︷ ︸
number of 0’s

< (#z.Q1(z))︸ ︷︷ ︸
number of 1’s

. (4.3)

The syntax of FOC is:

t ::= x | #x.ϕ1 (4.4)

ϕ ::= Qσ(t1) σ ∈ Σ (4.5)

| t1 = t2 | t1 < t2 (4.6)

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 (4.7)

| ∀x.ϕ1 | ∃x.ϕ1 (4.8)

We extend the definition of free variables (Eq. (1.5)) with:

FV(x) = {x} (4.9)

FV(Qσ(t1)) = FV(t1) σ ∈ Σ (4.10)

FV(t1 = t2) = FV(t1) ∪ FV(t2) (4.11)

FV(t1 < t2) = FV(t1) ∪ FV(t2) (4.12)

FV(#x.ϕ1) = FV(ϕ1) \ {x} (4.13)
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Terms are interpreted as integers, as follows:

xw,I = I(x) (4.14)

(#x.ϕ1)
w,I = |{i | w, I[x 7→ i] |= ϕ1}| (4.15)

And we extend the definition of |= (Eq. (1.9)) with:

w, I |= Qσ(t1) if wtw,I
1

= σ (4.16)

w, I |= t1 = t2 if tw,I
1 = tw,I

2 (4.17)

w, I |= t1 < t2 if tw,I
1 < tw,I

2 (4.18)

FOC is sometimes defined using counting quantifiers [Immerman, 1999, p. 185–187],
but the formulation above is equivalent and (we think) easier to use.

There is another logic called FOM, which is first-order logic withmajority quantifiers.
FOC and FOM are equivalent [Lange, 2004], and because FOM is more well-known,
we’ll also often refer to the class of languages that they both recognize as FOM.

The ability to count becomes more interesting when we can do something with
counts other than compare them. Addition is actually already definable in FOC and
FOM [Lange, 2004], so introducing + doesn’t increase its expressivity, but introducing
× does.

Threshold circuits and majority/counting in first-order logic are related by the
following:

Theorem 4.7 (Barrington et al., 1990). FOM[×] defines exactly the languages in
DLOGTIME-uniform TC0.

And here’s an example of something that counting quantifiers make possible (proof
omitted):

Theorem 4.8 (Addition of O(n) numbers with O(log n) bits). If ϕ(i, x) is a formula
of FOM[×] such that for each i ∈ [n], ϕ(i, x) is true for exactly one x, then there is a
formula SUMϕ(y) which is true iff

y =
∑
i∈[n]

x s.t. ϕ(i, x) true

x.

4.1.4 Precision

One key issue is that while unique-hard and average-hard attention (which we will
encounter later) only produce rational numbers, soft attention produces real num-
bers. So far, attempts to obtain upper bounds on the expressivity of soft-attention
transformers involve limiting the precision of the numbers involved.

Actual computers, of course, use floating-point numbers with a constant number
of bits – usually 16 or 32. But Merrill and Sabharwal [2023a] argue that in O(1)
precision, attention cannot attend uniformly to a string of length n, because for large
enough n, the attention weights (α) would all round down to zero. Instead, they use
O(log n) bits of precision. Specifically, they use floating-point numbers, of the form
m · 2e, where the mantissa m has O(log n) bits including a sign bit, and the exponent
e has O(log n) bits including a sign bit. Our definition is slightly different from theirs:

Definition 4.9. A floating-point number with p bits (where p is even) is a pair (m, e)
where m, e are integers in [−2p/2−1, 2p/2−1). Its value is m · 2e.
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4.1.5 Main result

Theorem 4.10 (Merrill and Sabharwal, 2023a). For any O(log n)-precision trans-
former encoder T that recognizes a language L, there is a formula of FOM[×] that
defines L.

Proof. Merrill and Sabharwal [2023a]’s proof converted T to a family of threshold
circuits, but we show how to go straight to FOM[×].

Transformers only use a handful of operations: addition, multiplication, division,
max, exp, and iterated addition. It suffices to show that these operations can be
defined in FOM[×] on O(log n)-bit floating-point numbers.

Addition and multiplication, already defined on integers in Theorem 4.2, are
generalized to c log n bit integers (where c > 1) by Schweikardt [2005, Theorem 3.4bd].
Then floating-point addition and multiplication can be defined using the following
facts:

(m1 · 2e1) + (m2 · 2e2) =

{
(m1 +m2 · 2e2−e1) · 2e1 e1 ≥ e2

(m1 · 2e1−e2 +m2) · 2e2 e1 ≤ e2
(4.19)

(m1 · 2e1) · (m2 · 2e2) = m1m2 · 2e1+e2 . (4.20)

In all of the above, to get mantissas to be integers with the right number of bits, some
rounding may be necessary. Division can be defined in terms of multiplication.

Iterated addition on floating-point numbers is more difficult:

n−1∑
i=0

(mi · 2ei) =

(
n−1∑
i=0

(mi · 2ei−e)︸ ︷︷ ︸
(∗)

)
· 2e (4.21)

where (∗) is rounded off to the nearest integer. The problem is that if some of the
mi are negative, the sum could end up much smaller than the largest summand. For
example, suppose mantissas have 50 bits, and we want to compute

1 · 20 +−1 · 20 + 1 · 2−100 = 1 · 2−100.

If we choose e to be the maximum of the ei, then 1 · 2−100 would round off to 0, giving
a sum of 0. (This is known as catastrophic cancellation.) Instead, to make the sum
exact, Merrill and Sabharwal [2023b] choose e to be the minimum of the ei, which
makes each (∗) into a O(poly(n))-bit integer. Iterated addition of these so-called long
integers is still possible in FOM[×] [Barrington and Maciel, 2000, Lecture 7]. (But if
we had started with O(n) bits, we would at this point have an exponential number of
bits, so we’d need a different trick.)

For the exponential function (expx), first observe that

expx = exp2(x/ log 2) (4.22)

= exp2(⌊x/ log 2⌋) exp2(x/ log 2− ⌊x/ log 2⌋) (4.23)

= exp2(⌊x/ log 2⌋) exp(x− ⌊x/ log 2⌋ log 2︸ ︷︷ ︸
r

). (4.24)

The first factor is just an integer power of 2. The second factor still involves exp, but
now we know that 0 ≤ r < log 2, which is small enough that exp r can be approximated
by a truncated Taylor series (Merrill, p.c.; Hesse et al., 2002, Corollary 6.5). Let
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p ∈ O(log n) be the number of bits of precision. Then we take the first p terms of the
Taylor series about 0:

exp r =

∞∑
i=0

1

i!
ri =

p−1∑
i=0

1

i!
ri +Rp (4.25)

where the Lagrange remainder term Rp is, for some z in (0, r),

Rp =
exp z

p!
rp <

exp r

p!
rp <

2

p!
rp ≤ 2

2p
rp <

1

2p−1
. (4.26)

This means that our approximation has an error of at most “1 ulp” (unit in the last
place), typical for floating-point library implementations. (CUDA guarantees an error
of at most 2 ulp.)

So we compute Eq. (4.25) sans the remainder term Rp. Each term is an iterated
product of O(p) = O(log n) numbers, which can be expressed in FO[+,×] [Hesse et al.,
2002, Theorem 5.1], and the summation of p ∈ O(log(n)) terms can also be expressed
in FO[+,×] [Immerman, 1999].

4.2 Lower bound

With unique-hard attention, we were able to show an exact equivalence to FO and
LTL. But softmax attention is trickier.

• Bhattamishra et al. [2020a] showed that one-state Parikh automata can be
simulated by SMATs.

• Chiang et al. [2023] defined a logic called FOC[+;MOD] and showed that it can
be simulated by SMATs.

• Barceló et al. [2024] defined an extension of LTL with counting, called LTL[#,+],
and showed that it can be simulated by AHATs.

• Perhaps surprisingly, there isn’t a published proof that softmax-attention trans-
formers can simulate LTL (but we’re working on it).

Here, we show that softmax-attention transformers can simulate a temporal logic
without since but with a counting operator [Yang and Chiang, 2024]. We call this
logic Kt[#,+].

4.2.1 Kt[#,+]

The syntax of Kt[#,+] is defined as follows:

t ::= #[ϕ1] (4.27)

| t1 + t2 (4.28)

ϕ ::= Qσ σ ∈ Σ (4.29)

| ϕ1 ∧ ϕ2 | ¬ϕ1 (4.30)

| t1 = t2 | t1 < t2 (4.31)

Other operators (∨, →, >, ≤, ≥) can be defined in terms of the ones above.
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Terms are interpreted as integers. If t is a term, we write its interpretation with
respect to string w and position i as tw,i, defined as follows.

#[ϕ1]
w,i = |{j ≤ i | w, j |= ϕ1}| (4.32)

(t1 + t2)
w,i = tw,i

1 + tw,i
2 (4.33)

And we define the semantics as follows:

w, i |= Qσ iff w[i] = σ (4.34)

w, i |= ϕ1 ∧ ϕ2 iff w, i |= ϕ1 and w, i |= ϕ2 (4.35)

w, i |= ¬ϕ iff w, i ̸|= ϕ (4.36)

w, i |= t1 = t2 iff tw,i
1 = tw,i

2 (4.37)

w, i |= t1 < t2 iff tw,i
1 < tw,i

2 (4.38)

Unlike Barceló et al. [2024]’s LTL[#,+], we do not have formulas P (t) where P is a
predicate other than = or <.

Example 4.11. Below are some example Kt[#,+] formulas and the languages they
define:

Language Formula

a∗b∗ #[Qa ∧ (#[Qb] ≥ 1)] = 0

a∗b∗a∗ #[Qb ∧#[Qa ∧ (#[Qb] ≥ 1)] ≥ 1] = 0

anbncn #[Qb ∧ (#[Qc] = 0)] = #[Qb]

∧#[Qa ∧ (#[Qb ∨Qc] = 0)] = #[Qa]

∧#[Qa] = #[Qb] ∧#[Qb] = #[Qc] ∧#[Qc] = #[Qa]

Dyck-1 (#[Q(] = #[Q)]) ∧ (#[#[Q)] > #[Q(]] = 0)

hello #[⊤] = 5 ∧Qo ∧#[Ql ∧#[Qe ∧#[Qh] = 1] = 1] = 2

4.2.2 Boolean and Count Representations

Many proofs of transformer lower bounds ignore the effects of layer normalization
(Section 1.4.4). Here, layer normalization is actually a key part of the construction, so
we will treat it with care.

First, we will ensure that the mean of every vector is zero, so that layer normalization
does not add or subtract anything. Second, we will design the transformer so that if
layer normalization scales a vector, it has no effect on the result of the computation. To
help us keep track of any scaling, we initially ensure that the word/position embedding
has as its 0th and 1st coordinates [

1
−1

]
.

Each vector contains Boolean values and counts. Instead of representing Boolean
values as {0, 1}, we use the following zero-mean representations:

true :

[
−1
1

]
false :

[
1

−1

]
.

Similarly, to represent the integer C in position i, we use[
C
i+1

− C
i+1

]
.
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The input is a string of symbols as usual, but we require a BOS token to be
prepended to the beginning of the input (or else we require that 1/(i+ 1) be in the
position embedding of i).

Let A ∈ (Rd)∗ be a sequence of activation vectors (cf. Eqs. (1.42) and (1.43)).
Assume that all subformulas and subterms of ϕ are numbered uniquely (that is, if ϕk
is a subformula and Ck′ is a subterm, then k ̸= k′). Each subformula ϕk is stored as
two elements of A(i). But at position 0, we always store a false value. Writing ϕk(i)
as shorthand for I[ϕk(i)]:

A[0, 2k : 2k + 1] =

[
1

−1

]
A[i, 2k : 2k + 1] =

[
−2ϕk(i) + 1
2ϕk(i)− 1

]
i > 0.

(4.39)

Similarly, each count term Ck is stored as:

A[0, 2k : 2k + 1] =

[
0
0

]
A[1, 2k : 2k + 1] =

[
−Ck(i)

i+1
Ck(i)
i+1

]
i > 0.

(4.40)

The division of Ck(i) by (i+1) is a consequence of the fact that attention computes an
average rather than a sum. Dealing with these divisions is a common feature of many
transformer constructions. In contrast to other constructions that undo the divisions
using nonstandard embeddings [Pérez et al., 2021, Barceló et al., 2024] or nonstandard
versions of layer normalization [Merrill and Sabharwal, 2024], our construction uses
no position embeddings and only standard layer normalization.

4.2.3 Counting

Counting is one of the important primitive operations that a transformer can perform.
In the following, we show how to simulate a # term in Kt[#,+] using a uniform
attention layer.

Lemma 4.12. Let A[∗, 2k : 2k + 1] store a sequence of Boolean values ϕ(i) as defined
above. For any i, let C(i) be the number of positions j ≤ i such that A[j, 2k : 2k + 1]
is true. Then there is a transformer block that computes, at each position i, and in

two other dimensions 2k′, 2k′ + 1, the values −C(i)
i+1 and C(i)

i+1 .

Proof. We are given that

A(ℓ)[i] =


...

−2ϕ(i)− 1
2ϕ(i) + 1

...

 .
We want to simulate the counting term #[ϕ(i)], that is, to compute ±C(i)

i+1 in
some other dimensions 2k′, 2k′ + 1. We construct a single transformer block. The
self-attention, at each position i, uses uniform attention to compute the average of all
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values up to and including position i in dimension 2k : 2k + 1:

H(ℓ+1)[i] =



...
−2ϕ(i)− 1
2ϕ(i) + 1

...
− 2

i+1

∑
i ϕ(i)− 1

2
i+1

∑
i ϕ(i) + 1
...


.

Note, however, that instead of the desired value C(i)
i+1 , we have actually computed

2C(i)
i+1 − 1, but it is straightforward to construct a FFNN that corrects this, giving

A(ℓ+1)[i] =



...
−2ϕ(i)− 1
2ϕ(i) + 1

...
− 1

i+1

∑
i ϕ(i)

1
i+1

∑
i ϕ(i)

...


.

As a final note, recall that the layer normalization that occurs after the attention
layer will apply a scaling factor to each column of the tensor. However, since we
only compare values within the same column, this scaling factor will not affect the
correctness of the computation, as we will describe in the following section.

4.2.4 Linear constraints

Kt[#,+] can express any linear constraint on counts, that is, constraints of the form∑
k∈K

akCk(i) ≥ 0 (4.41)

where the Ck are count terms, the ak are integer coefficients, and K is a finite set of
indices. (The syntax of Kt[#,+] allows other forms of constraints, but they can all be
normalized into the above form.)

Lemma 4.13. Let A ∈ (Rd)∗ be a sequence of n vectors in which, for each i ∈ [n] and
k ∈ K, A[i, 2k : 2k + 1] stores a count Ck(i) (using the representation in Eq. (4.40)).
Let ak for k ∈ K be integer coefficients as in Eq. (4.41). Let dimensions 2k′, 2k′ + 1
hold the value 0 across all positions. Then there is a stack of transformer blocks that
computes, at each position i, and in two other dimensions 2k′, 2k′ + 1, whether the
constraint Eq. (4.41) is true or false (using the representation in Eq. (4.39)).

Proof. First, we will need the quantity 1
i+1 , which we obtain by uniformly attending

to all positions, with a value of 1 for BOS and 0 for all other symbols.
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Second, we use a FFNN to compute, at each position i, the linear combination

S(i) =

∑
k∈K akCk(i)

i+ 1
=
∑
k∈K

ak
Ck(i)

i+ 1
.

To test whether this is nonnegative, we construct a feed-forward layer that computes
the function, given any input S(i):

gtz

(
S(i),

1

i+ 1

)
= min

(
0.5

i+ 1
,
S(i)

i+ 1
− 0.5

i+ 1

)
−min

(
0,
S(i)

i+ 1

)

−1 0 1 2
− 0.5

i+1

0

0.5
i+1

S(i)

g
tz

(S
(i
))

(This is where 1
i+1 gets used, and must scale with the rest of the vector.)

Observe that gtz(
∑

k Ck(i) + 0.5) equals 0.5
i+1 if

∑
k Ck(i) ≥ 0, and − 0.5

i+1 otherwise.
This is because the counts must be integers, so if

∑
k Ck(i) ≥ 0, then

∑
k Ck(i) +

0.5 ≥ 0.5, and the expression will evaluate to 0.5
i+1 . Otherwise,

∑
k Ck(i) ≤ −1, so∑

k Ck(i) + 0.5 < −0.5, and the expression will evaluate to − 0.5
i+1 .

Both the linear combination and comparison with 0 can be packed into a single
FFNN, and this FFNN can apply gtz to every other dimension too:

f





vi,0
−vi,0
...
0
0
...

vi,d/2−1

−vi,d/2−1




=



gtz(vi,0)
− gtz(vi,0)

...
gtz
(∑

k∈K akCk(i)
)

− gtz
(∑

k∈K akCk(i)
)

...
gtz(vi,d/2−1)

− gtz(vi,d/2−1)


.

This truncates all positive values in the tensor to be 0.5
i+1 at position i, and all

nonpositive values to be − 0.5
i+1 . As a result, the next application of layer normalization

(with appropriate parameter settings) scales every single value to ±1, back to Boolean
values. In particular, all previously-computed Boolean values are preserved, and the
newly-computed dimensions 2k′, 2k′ + 1 hold the correct Boolean value based on the
desired comparison

As a side effect, all previously-computed counts also get changed to ±1. We will
organize the construction so that these values are not used in any further computation.

4.2.5 Main Result

There may be several ways to perform the simulation of Kt[#,+] formulas, but it is
convenient to do this by induction over the depth of the formula.
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Definition 4.14. The modal depth of a formula ϕ or term C, which we notate as
md(ϕ), is the maximum level of nesting of # terms. That is,

md(Qσ) = 0 md(1) = 0

md(¬ϕ) = md(ϕ) md(#[ϕ]) = 1 +md(ϕ)

md(ϕ1 ∧ ϕ2) = max(md(ϕ1),md(ϕ2)) md(C1 + C2) = max(md(C1),md(C2))

md(C1 ≤ C2) = max(md(C1),md(C2))

Definition 4.15. Fix an alphabet Σ, and assume that the symbol BOS is not in Σ. We
say a masked transformer encoder T (as a composition of blocks T = Bb◦· · ·◦B1◦WE )
with d dimensions simulates a Kt[#,+] formula ϕ if for every input w ∈ Σ∗ with
length n and every subformula ψk of ϕ,

T (BOS ·w)[i+ 1, 2k : 2k + 1] =



[
−1

+1

]
if w, i ⊨ ψk

[
+1

−1

]
otherwise.

A crucial step in our construction is being able to compose transformers in parallel.

Lemma 4.16. If T1 and T2 are transformers of depth L1 and L2 which simulate ϕ1
and ϕ2, respectively, then there is a transformer T of depth L = max(L1, L2) which
simulates both ϕ1 and ϕ2.

This is straightforward, and is very similar to Lemma 2.6.

Theorem 4.17. For every Kt[#,+] formula ϕ, there exists a masked transformer
encoder which simulates ϕ.

Proof. We induct on the modal depth of ϕ. If ϕ is of modal depth 0, it must be a
Boolean combination of Qσ formulas. This can be simulated in the WE like mentioned
in Lemma 2.2

For the inductive step, let ϕ be a Kt[#,+] formula of modal depth m + 1. By
Definition 4.14, ϕ is a Boolean combination of:

• Subformulas of modal depth at most m.

• Subformulas of the form
∑

k∈K ak#[ψk] ≥ 0, where K is a set of indices, ak are
integers, and ψk are subformulas of modal depth m.

By the inductive hypothesis, for each subformula ψk of modal depth at most m, there
is a transformer Tk which simulates it. Parallel-compose all the Tk by Lemma 4.16 into
a single transformer. Then we need to perform the following operations in sequence:

1. Compute #[ψk] for all relevant ψk, as described in Section 4.2.3.

2. Compute all formulas of the form
∑

k∈K ak#[ψk] ≥ 0, as described in Sec-
tion 4.2.4.

3. Compute all Boolean combinations of the above subformulas as necessary.

4. Ensure the BOS position is False.
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This can be achieved by adding one block. The first step can be achieved with
a self-attention layer. We’ve described how to compute each of the next three steps
individually using a feed-forward layer, but their composition can also be performed
with a single feed-forward layer.

The previous chapter ended with a proof of the depth hierarchy for masked hard
attention transformers. This chapter does not! These upper and lower bounds are
suspected to not be tight enough, and the logics not well-understood enough, to prove
a depth hierarchy. To derive more precise charaterizations of the expressivity of soft
attention transformers, and reap the conceptual benefits of these characterizations,
poses an interesting challenge for future research.
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languages in NC 1 . Journal of Computer and System Sciences, 44(3):478–499,
1992. ISSN 0022-0000. doi:https://doi.org/10.1016/0022-0000(92)90014-A. URL
https://www.sciencedirect.com/science/article/pii/002200009290014A.

David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC 1 . Journal of Computer and System Sciences, 41(3):274–306, 1990.
doi:https://doi.org/10.1016/0022-0000(90)90022-D.

David Mix Barrington and Alexis Maciel. Advanced course on computational com-
plexity, 2000. URL https://people.clarkson.edu/~alexis/PCMI/. CMI-PCMI
Undergraduate Program.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of
Transformers to Recognize Formal Languages. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 7096–7116,
2020a. doi:10.18653/v1/2020.emnlp-main.576.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of
Transformers and its implications in sequence modeling. In Proceedings of the 24th
Conference on Computational Natural Language Learning (CoNLL), pages 455–475,
2020b. doi:10.18653/v1/2020.conll-1.37. URL https://aclanthology.org/2020.

conll-1.37.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 7654–7664, May 2022. doi:10.18653/v1/2022.acl-long.527.
URL https://aclanthology.org/2022.acl-long.527.

48

https://openreview.net/forum?id=B1J_rgWRW
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=gbrHZq07mq
https://doi.org/https://doi.org/10.1016/0022-0000(92)90014-A
https://www.sciencedirect.com/science/article/pii/002200009290014A
https://doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
https://people.clarkson.edu/~alexis/PCMI/
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.conll-1.37
https://aclanthology.org/2020.conll-1.37
https://aclanthology.org/2020.conll-1.37
https://doi.org/10.18653/v1/2022.acl-long.527
https://aclanthology.org/2022.acl-long.527


Bibliography 49

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity
of transformer encoders. In Proceedings of the 40th International Conference on
Machine Learning (ICML), volume 202 of Proceedings of Machine Learning Research,
pages 5544–5562, 2023. URL https://proceedings.mlr.press/v202/chiang23a.

html.

Kousha Etessami and Thomas Wilke. An until hierarchy and other applications of
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